Skip to main content

Advertisement

Log in

1.0 THz GaN IMPATT Source: Effect of Parasitic Series Resistance

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The degradation of high-frequency characteristics of a 1.0-THz double-drift region (DDR) impact avalanche transit time (IMPATT) diode based on wurtzite gallium nitride (Wz-GaN), due to the influence of parasitic series resistance, has been investigated. A two-dimensional (2-D) large-signal (L-S) simulation method based on a non-sinusoidal voltage excitation (NSVE) model has been used for this purpose. A comprehensive model of series resistance has been developed by considering the influence of skin effect, and the said model has been incorporated in the 2-D L-S simulation for studying the effect of RF power output and DC to RF conversion efficiency of the device. Results indicate 24.2–35.9% reduction in power output and efficiency due to the RF power dissipation in the positive series resistance. However, the device can still deliver 191.7–202.9 mW peak RF power to the load at 1.0 THz with 8.48–6.41% conversion efficiency. GaN IMPATT diodes are capable of generating higher RF power at around 1 THz than conventional diodes, but the effect of parasitic series resistance causes havoc reduction in power output and efficiency. The nature of the parasitic resistance is studied here in the level of device fabrication and optimization, which to our knowledge is not available at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photodetector designs, Appl. Phys. Rev. 1, 041102 (2014).

    Article  Google Scholar 

  2. R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue, Phys. Med. Biol. 47, 3853 (2002).

    Article  Google Scholar 

  3. M. Nagel, P.H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Buttner, Integrated THz technology for label-free genetic diagnostics, Appl. Phys. Lett. 80 (1), 154 (2002).

    Article  Google Scholar 

  4. N. Karpowicz, H. Zhong, C. Zhang, K.I Lin, J.S. Hwang, J. Xu, X.C. Zhang, Compact continuous-wave subterahertz system for inspection applications, Appl. Phys. Lett. 86 (5), 054105 (2005).

    Article  Google Scholar 

  5. K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, Non-invasive inspection of c-4 explosive in mails by terahertz time-domain spectroscopy, J. Appl. Phys. 43 (3B), L414 (2004).

    Article  Google Scholar 

  6. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Opt. Express 11 (20), 2549 (2003).

    Article  Google Scholar 

  7. C. Joerdens, M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy, Opt. Eng. 47 (3), 037003 (2008).

    Article  Google Scholar 

  8. M. Tonouchi , Cutting-edge terahertz technology, Nat. Photonics 1, 97 (2007).

    Article  Google Scholar 

  9. P.H. Siegel, Terahertz technology, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).

    Article  Google Scholar 

  10. B. S. Williams, Terahertz quantum-cascade lasers, Nat. Photonics 1, (2007) 517.

    Article  Google Scholar 

  11. F. Schuster , D. Coquillat , H. Videlier , M. Sakowicz , F. Teppe , L. Dussopt , B. Giffard , T. Skotnicki , W. Knap, Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19, 7827 (2011).

    Article  Google Scholar 

  12. Xinghan Cai, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene, Nature Nanotechnology 9, (2014) 814.

    Article  Google Scholar 

  13. L. Liu, J. L. Hesler, H. Xu, A. W. Lichtenberger, R. M. Weikle A broadband quasi-optical terahertz detector utilizing a zero bias Schottky diode, IEEE Microwave Wireless Compon. Lett. 20, 504 (2010).

    Article  Google Scholar 

  14. G. C. Trichopoulos , H. L. Mosbacker , D. Burdette , K. Sertel , A broadband focal plane array camera for real-time THz imaging applications, IEEE Trans. Antennas Propag. 61, 1733 (2013).

    Article  Google Scholar 

  15. C. M. Watts , D. Shrekenhamer , J. Montoya , G. Lipworth , J. Hunt , T. Sleasman , S. Krishna , D. R. Smith , W. J. Padilla, Terahertz compressive imaging with metamaterial spatial light modulators, Nat. Photonics 8, 605 (2014).

    Article  Google Scholar 

  16. A. Tiwari, H. Satoh, M. Aoki, M. Takeda, N. Hiromoto, H. Inokawa, Fabrication and analytical modeling of integrated heater and thermistor for antenna-coupled bolometers, Sensors and Actuators A: Physical 222, 160 (2015).

    Article  Google Scholar 

  17. A. Banerjee, H. Satoh, A. Tiwari, C. Apriono, E. T. Rahardjo, N. Hiromoto and H. Inokawa, Width dependence of platinum and titanium thermistor characteristics for application in room-temperature antenna-coupled terahertz microbolometer, Jpn. J. Appl. Phys. 56, 04CC07 (2017).

    Article  Google Scholar 

  18. A. Banerjee, H. Satoh, Y. Sharma, N. Hiromoto, H. Inokawa Characterization of platinum and titanium thermistors for terahertz antenna-coupled bolometer applications, Sensors and Actuators: A Physical, Vol. 273, pp. 49–57, Feb. 10, 2018.

  19. A. Banerjee, Hiroaki Satoh, Durgadevi Elamaran, Yash Sharma, Norihisa Hiromoto, and Hiroshi Inokawa, Optimization of narrow width effect on titanium thermistor in uncooled antenna-coupled terahertz microbolometer, Jpn. J. Appl. Phys., Vol. 57, No. 4S, pp. 04FC09_1–7, Mar. 19, 2018.

  20. J. Ward, E. Schlecht, G. Chattopadhyay, A. Maestrini, J. Gill, F. Maiwald, H. Javadi, and I. Mehdi, Capability of THz sources based on Schottky diode frequency multiplier chains, IEEE MTT-S Digest., pp. 1587–1590, 2004.

  21. S. Heyminck, R. Güsten, U. Graf, J. Stutzki, P. Hartogh, H. W. Hübers, O. Ricken, and B. Klein, GREAT: ready for early science aboard SOFIA, Proc. 20th Intl. Symp. Space THz Techn., Charlottesville, VA., pp. 315–317, 2009.

  22. T. W. Crowe, J. L. Hesler, S. A. Retzloff, C. Pouzou, and G. S. Schoenthal, Solid state LO sources for greater than 2 THz, 2011 ISSTT Digest, 22nd Symposium on Space Terahertz Technology, Tucson Arizona, USA 2011.

  23. T. W. Crowe, J. L. Hesler, S. A. Retzloff, C. Pouzou, and J. L. Hester, Multiplier based sources for frequencies above 2 THz, 36 th International Conference on Infrared, Millimeter and terahertz Sources (IRMMW-THz), pp. 1, 2011.

  24. A Maestrini, I Mehdi, JV Siles, J Ward, R Lin, B Thomas, C Lee, J Gill, G Chattopadhyay, E Schlecht, J Pearson, and P Siegel, First demonstration of a tunable electronic source in the 2.5 to 2.7 THz range, IEEE Trans. Terahertz Science Techn., vol. 3, 2012.

  25. S. Kitagawa, M. Mizuno, S. Saito, K. Ogino, S. Suzuki, and M. Asada, Frequency-tunable resonant-tunneling-diode terahertz oscillators applied to absorbance measurement, Japanese Journal of Applied Physics, vol. 56, pp. 058002–1–3, 2017.

  26. B. S. Williams, Terahertz quantum-cascade lasers, Nature Photonics, vol. 1, pp. 617–626, 2007.

    Article  Google Scholar 

  27. R. Lai, X. Mei, W. Deal, W. Yoshida, Y. Kim, P. Liu, J. Lee, J. Uyeda, V. Radisic, M. Lange, T. Gaier, L. Samoska, and A. Fung, Sub 50 nm InP HEMT device with f max greater than 1 THz, in Proc. IEEE Int. Electron Devices Meeting, 2007, pp. 609–611.

  28. W. Deal, X. Mei, V. Radisic, K. Leong, S. Sarkozy, B. Gorospe, J. Lee, P. Liu, W. Yoshida, J. Zhou, M. Lange, J. Uyeda, and R. Lai, Demonstration of a 0.48 THz amplifier module using InP HEMT transistors, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 289–291, May 2010.

    Article  Google Scholar 

  29. M. Urteaga, M. Seo, J. Hacker, Z. Griffith, A. Young, R. Pierson, P. Rowell, A. Skalare, and M. Rodwell, InP HBT integrated circuit technology for terahertz frequencies, in Proc. IEEE Compound Semicond. Integr. Circuit Symp., 2010, pp. 1–4.

  30. E. Lobisser, Z. Griffith, V. Jain, B. Thibeault, M. Rodwell, D. Loubychev, A. Snyder, Y. Wu, J. Fastenau, and A. Liu, 200-nm InGaAs/InP type-I DHBT employing a dual-sidewall emitter process demonstrating f max >> 800 GHz and f T = 360 GHz, in Proc. IEEE Int. Conf. Indium Phosphide Related Materials, May 2009, pp. 16–19.

  31. M. Seo, M. Urteaga, A. Young, V. Jain, Z. Griffith, J. Hacker, P. Rowell, R. Pierson, and M. Rodwell, 300 GHz fixed-frequency and voltage-controlled fundamental oscillators in an InP HBT process, in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 272–275.

  32. J. Hacker, M. Seo, A. Young, Z. Griffith, M. Urteaga, T. Reed, and M. Rodwell, THz MMICs based on InP HBT technology, in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 1126–1129.

  33. M. Seo, M. Urteaga, J. Hacker, A. Young, Z. Griffith, V. Jain, R. Pierson, P. Rowell, A. Skalare, A. Peralta, R. Lin, D. Pukala, and M. Rodwell, InP HBT IC technology for terahertz frequencies: fundamental oscillators up to 0.57 THz, IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2203–2214, 2011.

    Article  Google Scholar 

  34. Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, Sudeepta Dasgupta and J. P. Banerjee, IMPATT devices based on group III-V compound semiconductors: prospects as potential terahertz radiators, HKIE Transactions, vol. 21, issue 3, pp. 135–147, 2014.

  35. Aritra Acharyya and J. P. Banerjee, Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources, Applied Nanoscience, Springer, vol. 4, pp. 1–14, 2014.

    Article  Google Scholar 

  36. Aritra Acharyya and J. P. Banerjee, Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits, IETE Journal of Research [India], vol. 59, issue 2, pp. 118–127, March-April 2013.

  37. V. A. Dmitriev et al., SiC a(3)n alloys and wide band gap nitrides grown on SiC substrates. Inst Phys Conf. Ser., vol. 141, pp. 497–502, 1995.

    Google Scholar 

  38. Y. V. Melnik, I. P. Nikitina, A. S. Zubrilov, A. A. Sitnikova , Y. G. Musikhin, V. A. Dmitriev, High-quality GaN grown directly on SiC by halide vapour phase epitaxy, Inst Phys. Conf. Ser., vol. 142, pp. 863–866,1996.

    Google Scholar 

  39. Adesida et al. Dry and wet etching for group 111 nitrides, MRS Internet J. Nitride Semiconductor Res. 4S1, G1.4, 1999.

  40. C. F. Chu, C.C. Yu, Y.K. Wang, J.Y. Tsai, F.I. Lai and S.C. Wang, Low-resistance ohmic contacts on p-type GaN using Ni/Pd/Au metallization, Appl. Phys. Lett., vol. 77, pp. 3423–3425, 2000.

    Article  Google Scholar 

  41. J. Burm, K. Chu, W.A. Davis, W.J. Schaff, L.F. Eastman and T.J. Eustis, Ultra-low resistive ohmic contacts on n-GaN using Si implantation, Appl. Phys. Lett., vol. 70, pp. 464, 1997.

    Article  Google Scholar 

  42. T. Al-Attar, and T. H. Lee, Monolithic integrated millimeter-wave IMPATT transmitter in standard CMOS technology, IEEE Trans. on MTT, vol. 53, no. 11, pp. 3557–3561, 2005.

    Article  Google Scholar 

  43. M. Gilden, and M. E. Hines, Electronic tuning effects in Read microwave avalanche diode, IEEE Trans. on Electron. Devices, vol. ED-13, pp. 169–175, 1966.

    Article  Google Scholar 

  44. Aritra Acharyya, Suranjana Banerjee and J. P. Banerjee, Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices, Journal Computational Electronics [USA], Springer, vol. 12, issue 3, pp. 511–525, 2013.

  45. W. Harth, Large-signal series resistance of IMPATT-diodes, Arch. Elektron. Uebertragungstechnik, vol. 33, pp. 502–504, 1979.

    Google Scholar 

  46. Aritra Acharyya, Suranjana Banerjee and J. P. Banerjee, A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-Band Si IMPATTs from the electric field snap-shots, International Journal of Microwave and Wireless Technologies, vol. 5, no. 1, pp. 91–100, 2013.

    Article  Google Scholar 

  47. S. M. Sze, Physics of semiconductor devices, 2nd edn Wiley,New York, 1981.

    Google Scholar 

  48. Partha Banerjee, Aritra Acharyya, Arindam Biswas and A. K. Bhattacharjee, Effect of magnetic field on the RF performance of millimeter-wave IMPATT source, Journal of Computational Electronics [USA], Springer, vol. 15, pp. 210–221, 2016.

  49. M. Kurata, Numerical analysis for semiconductor devices, Heath, Lexington, 1982.

  50. H. H. Heimeier, A two-dimensional numerical analysis of a silicon npn transistor, IEEE Trans. Electron Dev., vol. 20, pp. 708–714, 1973.

    Article  Google Scholar 

  51. W. Hayt, Engineering electromagnetics. 4th edn McGraw-Hill, New York, 1981.

    Google Scholar 

  52. Mass magnetic susceptibility of the elements. http://periodictable.com/Properties/A/MassMagneticSusceptibility.v.log.html (Last accessed on: November 2017).

  53. Density of the elements. http://periodictable.com/Properties/A/Density.v.log.html (Last accessed on: November 2017).

  54. Electrical conductivity of the elements. http://periodictable.com/Properties/A/ElectricalConductivity.v.log.html (Last accessed on: November 2017).

  55. F. A. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers, Solid-State Electron., vol. 9, pp. 695–707, 1966.

    Article  Google Scholar 

  56. K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, Experimental evaluation of impact ionization coefficients in GaN, IEEE Electron Device Letter, vol. 20, no. 12, pp. 608–610, 1999.

    Article  Google Scholar 

  57. S. C. Shiyu, and G. Wang, High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective, Journal of Applied Physics, vol. 103, pp. 703–708, 2008.

    Google Scholar 

  58. The Ioffe Institute, Electronic archive: new semiconductor materials, characteristics and properties, Available from: http://www.ioffe.ru/SVA/NSM/Semicond/index.html (Last accessed on: November 2017).

  59. B. V. Zeghbroeck, Principles of semiconductor devices, Colorado Press, USA, 2011.

  60. M. Sridharan, and S. K. Roy, Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band symmetrical DDR, Electron Lett., vol. 14, pp. 635–637, 1978.

    Article  Google Scholar 

  61. M. Sridharan, and S. K. Roy, Effect of mobile space charge on the small signal admittance of silicon DDR, Solid State Electron., vol. 23, pp. 1001–1003, 1980.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Arindam Biswas wishes to thank the Science and Engineering Research Board (SERB), India, for providing financial support for carrying out this research work through the Early Career Research (ECR) Award scheme having the grant file number ECR/2017/000024/ES.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arindam Biswas or Hiroshi Inokawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Sinha, S., Acharyya, A. et al. 1.0 THz GaN IMPATT Source: Effect of Parasitic Series Resistance. J Infrared Milli Terahz Waves 39, 954–974 (2018). https://doi.org/10.1007/s10762-018-0509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0509-z

Keywords

Navigation