Skip to main content

Advertisement

Log in

State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper presents a review of the experimental achievements related to the development of high-power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for many applications. In addition, this work gives a short overview on the present development status of frequency step-tunable and multi-frequency gyrotrons, coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, large orbit gyrotrons (LOGs), quasi-optical gyrotrons, fast- and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWOs, gyro-harmonic converters, gyro-peniotrons, magnicons, free electron masers (FEMs), and dielectric vacuum windows for such high-power mm-wave sources. Gyrotron oscillators (gyromonotrons) are mainly used as high-power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control, and diagnostics of magnetically confined plasmas for clean generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 min (CPI and European KIT-SPC-THALES collaboration). The world record parameters of the European tube are as follows: 0.92 MW output power at 30-min pulse duration, 97.5% Gaussian mode purity, and 44% efficiency, employing a single-stage depressed collector (SDC) for energy recovery. A maximum output power of 1.5 MW in 4.0-s pulses at 45% efficiency was generated with the QST-TOSHIBA (now CANON) 110-GHz gyrotron. The Japan 170-GHz ITER gyrotron achieved 1 MW, 800 s at 55% efficiency and holds the energy world record of 2.88 GJ (0.8 MW, 60 min) and the efficiency record of 57% for tubes with an output power of more than 0.5 MW. The Russian 170-GHz ITER gyrotron obtained 0.99 (1.2) MW with a pulse duration of 1000 (100) s and 53% efficiency. The prototype tube of the European 2-MW, 170-GHz coaxial-cavity gyrotron achieved in short pulses the record power of 2.2 MW at 48% efficiency and 96% Gaussian mode purity. Gyrotrons with pulsed magnet for various short-pulse applications deliver Pout = 210 kW with τ = 20 μs at frequencies up to 670 GHz (η ≅ 20%), Pout = 5.3 kW at 1 THz (η = 6.1%), and Pout = 0.5 kW at 1.3 THz (η = 0.6%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require tubes with the following parameters: f > 24 GHz, Pout = 4–50 kW, CW, η > 30%. The CW powers produced by gyroklystrons and FEMs are 10 kW (94 GHz) and 36 W (15 GHz), respectively. The IR FEL at the Thomas Jefferson National Accelerator Facility in the USA obtained a record average power of 14.2 kW at a wavelength of 1.6 μm. The THz FEL (NOVEL) at the Budker Institute of Nuclear Physics in Russia achieved a maximum average power of 0.5 kW at wavelengths 50–240 μm (6.00–1.25 THz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gaponov-Grekhov, A.V., Granatstein, V.L., 1994, Application of high-power microwaves. Artech House, Boston, London.

    Google Scholar 

  2. Thumm, M., 1997, Applications of high-power microwave devices, in "Generation and Application of High Power Microwaves". R.A. Cairns and A.D.R. Phelps, eds., Institute of Physics Publishing, Bristol and Philadelphia, 305-323.

    Google Scholar 

  3. Thumm, M., 2001, Novel applications of millimeter and submillimeter wave gyro-devices. Int. J. Infrared and Millimeter Waves, 22, 377-386.

    Article  Google Scholar 

  4. Thumm, M., 2002, Free-electron masers vs. gyrotrons: prospects for high-power sources at millimetre and submillimeter wavelengths. Nuclear Instruments & Methods in Physics Research, A483, 196-194.

    Google Scholar 

  5. Thumm, M., 2005, High power gyro-devices for plasma heating and other applications. Int. J. Int. J. Infrared and Millimeter Waves, 26, 483-503.

    Article  Google Scholar 

  6. Thumm, M.K.A., 2011, Recent developments on high-power gyrotrons – introduction to this special issue. J. of Infrared, Millimeter, and Terahertz Waves, 32, 241-252.

    Article  Google Scholar 

  7. Thumm, M., 2011, Gyro-devices and their applications, Proc. 12th IEEE Int. Vacuum Electronics Conference (IVEC 2011), Bangalore, India, PL-7, Plenary Talk. pp. 521-524.

  8. Hirshfield, J.L., Granatstein, V.L., 1977, The electron cyclotron maser – an historical survey. IEEE Trans. on Microwave Theory and Techniques, 25, 522-527.

    Article  Google Scholar 

  9. Flyagin, V.A., Gaponov, A.V., Petelin, M.I., Yulpatov, V.K., 1977, The gyrotron. IEEE Trans. Microwave Theory and Techniques, 25, 514-521.

    Article  Google Scholar 

  10. Andronov, A.A., Flyagin, V.A., Gaponov, A.V., Goldenberg, A.L., Petelin, M.I., Usov, V.G., Yulpatov, V.K., 1978, The gyrotron: high power sources of millimetre and submillimetre waves. Infrared Physics, 18, 385-393.

    Article  Google Scholar 

  11. Petelin, M.I., 1993, Physics of advanced gyrotrons. Plasma Phys. and Contr. Nucl. Fusion, 35, Supplement B, 343-351.

    Article  Google Scholar 

  12. Flyagin, V.A., Goldenberg, A.L., Nusinovich, G.S., 1984, Powerful gyrotrons, in Infrared and Millimeter Waves, Vol. 11, ed. K.J. Button, Academic Press, New York, 179-226.

  13. Flyagin, V.A., Nusinovich, G.S., 1988, Gyrotron oscillators. Proceedings of the Institute of Electrical and Electronics Engineers, 76, 644-656 and, 1985, Powerful gyrotrons for thermonuclear research, in Infrared and Millimeter Waves, Vol. 13, ed. K.J. Button, Academic Press, New York, 1-17.

    Google Scholar 

  14. Felch, K., Huey, H., Jory, H., 1990, Gyrotrons for ECH application. J. Fusion Energy, 9, 59-75.

    Article  Google Scholar 

  15. Goldenberg, A.L., Denisov, G.G., Zapevalov, V.E., Litvak, A.G., Flyagin, V.A., 1996, Cyclotron resonance masers: state of the art. Radiophys and Quantum Electronics, 39, 423-446.

    Article  Google Scholar 

  16. Gold, S.H., Nusinovich, G.S., 1997, Review of high-power microwave source research. Rev. Scient. Instruments, 68, 3945-3974.

    Article  Google Scholar 

  17. Granatstein, V.L., Levush, B., Danly, B.G., Parker, R.K., 1997, A quarter century of gyrotron research and development. IEEE Trans. on Plasma Science, 25, 1322-1335.

    Article  Google Scholar 

  18. Petelin, M.I., 1999, One century of cyclotron radiation. IEEE Trans. on Plasma Science, 27, 294-302 and private communications, Institute of Applied Physics, Russia.

  19. Felch, K.L., Danly, B.G., Jory, H.R., Kreischer, K.E., Lawson, W., Levush, B., Temkin, R.J., 1999, Characteristics and applications of fast-wave gyrodevices. Proc. of the IEEE, 87, 752-781.

    Article  Google Scholar 

  20. Thumm, M., 2002, Progress in gyrotron development. Fusion Engineering and Design, 66-68, 69-90.

    Article  Google Scholar 

  21. Chu, K.R., 2004, The electron cyclotron maser. Rev. Mod. Phys., 76, 489-540.

    Article  Google Scholar 

  22. Sakamoto, K., 2007, Progress of high-power-gyrotron development for fusion research. Fusion Science and Technology, 52, 145-153.

    Article  Google Scholar 

  23. Faillon, G., Kornfeld, G., Bosch, E., Thumm, M.K., 2008, Microwave Tubes, in "Vacuum Electronics – Components and Devices", J.A. Eichmeier, M.K. Thumm, eds., Springer, Berlin, Heidelberg, Germany, 1-84.

    Google Scholar 

  24. Thumm, M., 2009, History, present status and future of gyrotrons, Proc. 10th IEEE Int. Vacuum Electronics Conference (IVEC 2009), Rome, Italy, pp. 37-40.

  25. Thumm, M., 2011, Progress on gyrotrons for ITER and future thermonuclear fusion reactors. IEEE Trans. on Plasma Science, 39, 971-979.

    Article  Google Scholar 

  26. Litvak, A., Sakamoto, K., Thumm, M., 2011, Innovation on high-power long-pulse gyrotrons. Plasma Physics and Controlled Fusion, 53, 12402 (14 pp).

    Article  Google Scholar 

  27. Nusinovich, G.S., Thumm, M.K.A., Petelin, M., 2014, The gyrotron at 50: Historical overview. J. Infrared, Millimeter, and Terahertz Waves, 35, No. 4, 325-381.

    Google Scholar 

  28. Thumm, M., 2014, Recent advances in the worldwide fusion gyrotron development. IEEE Trans. on Plasma Science, 42, No. 3, 590-599.

    Google Scholar 

  29. Petelin, M.I., 2015, The gyrotron: physical genealogy. Terahertz Science and Technology, 8, No. 4, 157-166.

    Google Scholar 

  30. Luce, T.C., 2002, Applications of high-power millimeter waves in fusion energy research. IEEE Trans. on Plasma Science, 30, 734-754.

    Article  Google Scholar 

  31. Imai, T., Kobayashi, N., Temkin, R., Thumm, M., Tran, M.Q., Alikaev, V., 2001, ITER R&D: auxiliary systems: electron cyclotron heating and current drive system. Fusion Engineering and Design, 55, 281-289.

    Article  Google Scholar 

  32. Zohm, H., Gantenbein, G., Giruzzi, G., Günter, S., Leuterer, F., Maraschek, M., Meskat, J., Peeters, A.G., Suttrop, W., Wagner, D., Zabiégo, M., ASDEX Upgrade Team, ECRH Group, 1999, Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX Upgrade. Nuclear Fusion, 39, 577-580.

    Article  Google Scholar 

  33. Gantenbein, G., Zohm, H., Giruzzi, G., Günter, S., Leuterer, F., Maraschek, M., Meskat, J., Yu, Q., ASDEX Upgrade Team, ECRH-Group (AUG), 2000, Complete suppression of neoclassical tearing modes with current drive at the electron-cyclotron-resonance frequency in ASDEX Upgrade tokamak. Phys. Rev. Lett., 85, 1242-1245.

    Article  Google Scholar 

  34. Zohm, H., Gantenbein, G., Gude, A., Günter, S., Leuterer, F., Maraschek, M., Meskat, J.P., Suttrop, W., Yu, Q., ASDEX Upgrade Team, ECRH Group (AUG), 2001, The physics of neoclassical tearing modes and their stabilization by ECCD in ASDEX Upgrade. Nuclear Fusion, 41, 197-202.

    Article  Google Scholar 

  35. Zohm, H., Gantenbein, G., Gude, A., Günter, S., Leuterer, F., Maraschek, M., Meskat, J., Suttrop, W., Yu, Q., ASDEX Upgrade Team, ECRH-Group (AUG), 2001, Neoclassical tearing modes and their stabilization by electron cyclotron current drive in ASDEX Upgrade. Physics of Plasmas, 8, 2009-2016.

    Article  Google Scholar 

  36. Prater, R., 2005, Application of electron cyclotron current drive on ITER. Journal of Physics: Conference Series, 25, 257-265.

    Google Scholar 

  37. Zohm, H., Thumm, M., 2005, On the use of step-tuneable gyrotrons in ITER. Journal of Physics: Conference Series, 25, 274-282.

    Google Scholar 

  38. Wagner, D., Leuterer, F., Manini, A., Monaco, F., Münich, M., Ryter, R., Schutz, H., Zohm, H., Franke, T., Heidinger, R., Thumm, M., Kasparek, W., Gantenbein, G., Litvak, A.G., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Denisov, G.G., Tai, E.M., Solyanova, E.A., Malygin, S.A., 2006, New frequency step-tunable ECRH system for ASDEX Upgrade, Int. J. of Infrared and Millimeter Waves, 27, 173-182.

    Article  Google Scholar 

  39. Wagner, D., Leuterer, F., Manini, A., Monaco, F., Münich, M., Ryter, R., Schütz, H., Stober, J., Zohm, H., Franke, T., Danilov, I., Heidinger, R., Thumm, M., Gantenbein, G., Kasparek, W., Lechte, C., Litvak, A., Denisov, G., Tai, E., Popov, L., Nichiporenko, V., Myasnikov, V., Solyanova, E., Malygin, S., Meo, F., Woskov, P., 2007, The new multi-frequency electron cyclotron resonance heating system for ASDEX Upgrade, Fusion Science and Technology, 52, 313-320.

    Article  Google Scholar 

  40. Zohm, H., 2007, Recent experimental progress in electron cyclotron resonance heating and electron cyclotron current drive in magnetically confined fusion plasmas. Fusion Science and Technology, 52, 134-144.

    Article  Google Scholar 

  41. Zohm, H., Gantenbein, G., Leuterer, F., Manini, A., Maraschek, M., Yu, Q., and the ASDEX Upgrade Team, 2007, Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER. Nuclear Fusion, 47, 228-232.

    Article  Google Scholar 

  42. Wagner, D.H., Grünwald, G., Leuterer, F., Manini, A., Monaco, F., Münich, M.J., Schütz, H., Stober, J., Zohm, H., Franke, T., Thumm, M., Heidinger, R., Gantenbein, G., Meier, A., Kasparek, W., Lechte, C., Litvak, A.G., Denisov, G.G., Chirkov, A.V., Tai, E.M., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Solyanova, E.A., Malygin, S.A., Meo, F., Woskow, P.O., 2008, Present status of the new multifrequency ECRH system for ASDEX Upgrade, IEEE Trans. on Plasma Science, 36, 324-331.

    Article  Google Scholar 

  43. Wagner, D., Stober, J., Leuterer, F., Sips, G., Grünwald, G., Monaco, F., Münich, M., Poli, E., Schütz, H., Volpe, F., Treutterer, W., Zohm, H., Franke, T., Thumm, M., Heidinger, R., Gantenbein, G., Meier, A., Kasparek, W., Lechte, C., Litvak, A., Denisov, G., Chirkov, A., Tai, E., Popov, L., Nichiporenko, V., Myasnikov, V., Solyanova, E., Malygin, S., 2008, Multi-frequency ECRH at ASDEX Upgrade, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 2, pp. 304-311. Wagner, D., Stober, J., Bäumel, S., Franke, T., Leuterer, F., Poli, E., Monaco, F., Münich, M., Schütz, H., Zohm, H., Thumm, M., Scherer, T., Meier, A., Gantenbein, G., Flamm, J., Kasparek, W., Lechte, C., Höhnle, H., Litvak, A.G., Denisov, G.G., Cirkov, A., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Tai, E.M., Solyanova, E.A., Malygin, S.A., 2009, Multi-frequency ECRH system at ASDEX Upgrade, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, R4D06.0016.

  44. Wagner, D.H., Stober, J.K., Leuterer, F., Sips, G., Grünwald, G., Monaco, F., Münich, M.J., Poli, E., Schütz, H., Volpe, F., Treutterer, W., Zohm, H., Franke, T., Thumm, M., Heidinger, R., Gantenbein, G., Meier, A., Kasparek, W., Lechte, C., Litvak, A.G., Denisov, G.G., Chirkov, A., Tai, E., Popov, L., Nichiporenko, V., Myasnikov, V., Solyanova, E., Malygin, S., 2009, Progress and first results with the new multifrequency ECRH system for ASDEX Upgrade, IEEE Transactions on Plasma Science, 37, 395-402. Wagner, D., Stober, J., Leuterer, F., Monaco, F., Münich, M., Schmid-Lorch, D., Schütz, H., Zohm, H., Thumm, M., Scherer, T., Meier, A., Gantenbein, G., Flamm, J., Kasparek, W., Höhnle, H., Lechte, C., Litvak, A.G., Denisov, G.G., Chirkov, A., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Tai, E.M., Solyanova, E.A., Malygin, S.A., 2010, Multi-frequency ECRH at ASDEX Upgrade, status and plans, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Tu-E1.4.

  45. Wagner, D., Stober, J., Leuterer, F., Monaco, F., Münich, M., Schmid-Lorch, D., Schütz, H., Zohm, H., Thumm, M., Scherer, T., Meier, A., Gantenbein, G., Flamm, J., Kasparek, W., Höhnle, H., Lechte, C., Litvak, A.G., Denisov, G.G., Chirkov, A., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Tai, E.M., Solyanova, E.A., Malygin, S.A., 2011, Recent upgrades and extensions of the ASDEX Upgrade ECRH system. J. of Infrared, Millimeter, and Terahertz Waves, 32, 274-282.

    Article  Google Scholar 

  46. Stober, J., Bock, A., Höhnle, H., Reich, M., Sommer, F., Treutterer, W., Wagner, D., Giannone, L., Herrmann, A., Leuterer, F., Monaco, F., Maraschek, M., Mlynek, A., Müller, S., Münich, M., Poli, E., Schubert, M., Schütz, H., Zohm, H., Kasparek, W., Stroth, U., Meier, A., Scherer, T., Strauß, D., Vaccaro, A., Flamm, J., Thumm, M., Litvak, A., Denisov, G.G., Chirkov, A.V., Tai, E.M., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Soluyanova, A., Malygin, S.A., ASDEX Upgrade Team, 2012, ECRH on ASDEX Upgrade. System status, feed-back control, plasma physics results. EPJ Web of Conferences, 32, 02011/1-8.

    Article  Google Scholar 

  47. Wagner, D., Stober, J., Leuterer, F., Monaco, F., Müller, S., Münich, M., Rapson, C., Reich, M., Ryter, F., Schubert, M., Schütz, H., Treutterer, W., Zohm, H., Thumm, M., Scherer, T., Meier, A., Gantenbein, G., Jelonnek, J., Kasparek, W., Lechte, C., Plaum, B., Litvak, A.G., Denisov, G.G., Chirkov, A., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Tai, E.M., Solyanov, E.A., Malygin, S.A., ASDEX Upgrade Team, 2014, ECRH at ASDEX Upgrade - Development of a flexible high-power millimeter wave system driven by plasma physics needs and machine safety. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 11-12.

  48. Stober, J., Sommer, F., Anigioni, C., Bock, A., Fable, E., Leuterer, F., Monaco, F., Müller, S., Münich, M., Pertzold, B., Poli, E., Schubert, M., Schütz, H., Wagner, D., Zohm, H., the ASDEX Upgrade Team, Kasparek, W., Plaum, B., Meier, A., Scherer, Th., Strauß, D., Jelonnek, J., Thumm, M., Litvak, A., Denisov, G.G., Chirkov, A.V., Tai, E.M., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Soluyanova, E.A., Malygin, V., 2015, High power ECRH and ECCD in moderately collisional ASDEX Upgrade H-modes and status of EC system upgrade. EPJ Web of Conferences, 87, 02004 (6 pp).

    Article  Google Scholar 

  49. Darbos, C., Henderson, M., Albajar, F., Bigelow, T., Bonicelli, T., Chavan, R., Denisov, G.G., Fasel, D., Heidinger, R., Hogge, J.P., Kobayashi, N., Piosczyk, B., Rao, S.L., Rasmussen, D., Saibene, G., Sakamoto, K., Takahashi, K., Thumm, M., 2009, Progress in design and integration of the ITER electron cyclotron H&CD system. Fusion Engineering and Design, 84, 651-655.

    Article  Google Scholar 

  50. Henderson, M., Albajar, F., Alberti, S., Baruah, U., Bigelow, T., Becker, B., Bertizzolo, R., Bonicelli, T., Bruschi, A., Caughman, J., Chavan, R., Cirant, S., Collazos, A., Darbos, C., deBaar, M., Denisov, G., Farina, D., Gandini, F., Gassmann, T., Goodman, T.P., Heidinger, R., Hogge, J.P., Jean, O., Kajiwara, K., Kasparek, W., Kasugai, A., Kern, S., Kobayashi, N., Landis, J.D., Moro, A., Nazare, C., Oda, J., Paganakis, I., Platania, P., Plaum, B., Poli, E., Porte, L., Piosczyk, B., Ramponi, G., Rao, S.L., Rasmussen, D., Rouden, D., Saibene, G., Sakamoto, K., Sanchez, F., Scherer, T., Shapiro, M., Sozzi, C., P. Spaeh, Strauss, D., Sauter, O., Takahashi, K., Tanga, A., Temkin, R., Thumm, M., Tran, M.Q., Zohm, H., Zucca, C., 2009, An overview of the ITER electron cyclotron H&CD system, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, F2P101.0554.

  51. Henderson, M., Albajar, F., Alberti, S., Baruah, U., Bigelow, T., Becket, B., Bertizzolo, R., Bonicelli, T., Bruschi, A., Caughman, J., Chavan, R., Cirant, S., Darbos, C., de Baar, M., Denisov, G., Farina, D., Gandini, F., Gassmann, T., Goodman, T.P., Heidinger, R., Hogge, J.P., Kajiwara, K., Kasparek, W., Kasugai, A., Kern, S., Kobayashi, N., Landis, J.D., Li, F., Litvak, A., Moro, A., Myasnikov, V., Nazare, C., Oda, J., Omori, T., Pagonakis, I., Parmer, D., Peters, B., Platania, P., Plaum, B., Poli, E., Porte, I., Piosczyk, B., Purohit, D., Ramponi, G., Rao, S.L., Rasmussen, D., Ronden, D., Saibene, G., Sakamoto, K., Sanchez, F., Scherer, T., Schreck, S., Singh, N.P., Shapiro, M., Sozzi, C., Spaeh, P., Straus, D., Sauter, O., Tai, E., Takahasi, T., Temkin, R., Thomas, P., Thumm, M., Zohm, H., 2011, Present status of the 24 MW 170 GHz ITER EC H&CD system, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 21-22.

  52. Omori, T., Henderson, M.A., Albajar, F., Alberti, S., Baruah, U., Bigelow, T., Beckett, B., Bertizzolo, R., Bonicelli, T., Bruschi, A., Caughman, J., Chavan, R., Cirant, S., Collazos, A., Cox, D., Darbos, C., de Baar, M.R., Denisov, G., Farina, D., Gandini, F., Gassmann, T., Goodman, T.P., Heidinger, R., Hogge, J.P., Kobayashi, N., Kumric, H., Landis, J.D., Moro, A., Nazare, C., Oda, Y., Pagonakis, I., Piosczyk, B., Platania, P., Plaum, B., Poli, E., Porte, L., Purohit, D., Ramponi, G., Rao, S.L., Rasmussen, D.A., Ronden, D.M.S., Rzesnicki, T., Saibene, G., Sakamoto, K., Sanchez, F., Scherer, T., Shapiro, M., Sozzi, C., Spaeh, P., Strauss, D., Suter, O., Takahashi, K., Temkin, R., Thumm, M., Tran, M.Q., Udintsev, V., Zohm, H., 2011, Overview of the ITER EC H&CD system and its capabilities. Fusion Engineering and Design, 86, 951-954.

    Article  Google Scholar 

  53. Cengher, M., Lohr, J., Gorelov, Y., Torrezan, A., Ponce, D., Chen, X., Moeller, C., 2016, DIII-D electron cyclotron heating system status and upgrades, IEEE Trans. on Plasma Science, 44, No. 12, 3465-3470.

    Google Scholar 

  54. Granucci, G., Aiello, G., Avramidis, K.A., Bruschi, A., Gantenbein, G., Garavaglia, S., Grossetti, G., Jelonnek, J., Moro, A., Poli, E., Rispoli, N., Strauss, D., Thumm, M., Tigelis, I., Tsironis, C., Franke, T., Tran, M.Q., 2017, The EC-system of EU DEMO: concepts for a reactor heating system. EPJ Web of Conferences, 149, 03003 (2 pp).

    Article  Google Scholar 

  55. Wagner, D., Stober, J., Kircher, M., Leuterer, F., Monaco, F., Münich, M., Schubert, M., Zohm, H., Gantenbein, G., Jelonnek, J., Thumm, M., Meier, A., Scherer, T., Strauss, D., Kasparek, W., Lechte, C., Plaum, B., Zach, A., Litvak, A.G., Denisov, G.G., Chirkov, A., Malygin, V., Popov, L.G., Nichiporenko, V.O., Myasnikov, V.E., Tai, E.M., Solyanova, E.A., Malygin, S.A., ASDEX Upgrade Team, 2017, Extension of the multi-frequency ECRH system at ASDEX Upgrade. EPJ Web of Conferences, 149, 03004 (2 pp).

    Article  Google Scholar 

  56. Takahashi, K., Oda, Y., Ikeda, R., Kobayashi, T., Moriyama, S., Sakamoto, K., Terakado, M., Abe, G., Isozaki, M., 2017, Development of MW gyrotron and equatorial launcher for ITER. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), 2017, Cancun, Mexico, WC2.2.

  57. Wagner, D., Stober, J., Kircher, M., Leuterer, F., Monaco, F., Münich, M., Schubert, M., Zohm, H., Gantenbein, G., Jelonnek, J., Thumm, M., Meier, A., Scherer, T., Strauss, D., Kasparek, W., Lechte, C., Plaum, B., Zach, A., Litvak, A., Denisov, G., Chirkov, A., Malygin, V., Popov, L.G., Myasnikov, V.E., Tai, E.M., Solyanova, E.A., ASDEX Upgrade Team, 2018, Status of the 8 MW multi-frequency ECRH system at ASDEX. Proc. 19th Int. Vacuum Electronics Conference (IVEC 2018), Monterey, CA, USA, 13.1.

  58. Garavaglia, S., Aiello, G., Alberti, S., Avramidis, K., Bruschi, A., Chelis, I., Franck, J., Gantenbein, G., Granucci, G., Grossetti, G., Hizanidis, K., Illy, S., Jelonnek, J., Kalaria, P., Latsas, G., Moro, A., Pagonakis, I., Peponis, D., Poli, E., Rispoli, N., Ruess, S., Rzesnicki, T., Scherer, T., Strauss, D., Thumm, M., Tigelis, I., Tsironis, C., Wu, C., Franke, T., Tran, M.Q., 2018, EU DEMO EC system preliminary conceptual design. Fusion Engineering and Design, 136, Part B, 1173-1177.

  59. Prater, R., 2004, Heating and current drive by electron cyclotron waves. Physics of Plasmas, 11, 2349-2376.

    Article  Google Scholar 

  60. Erckmann, V., Kasparek, W., Plaum, B., Lechte, C., Petelin, M.I., Braune, H., Gantenbein, G., Laqua, H.P., Lubiako, L., Marushchenko, N.B., Michel, G., Turkin, Y., Weissgerber, M., and the W7-X ECRH-teams at IPP Greifswald, IPF Stuttgart, and KIT, 2012, Large scale CW ECRH systems: some considerations. EPJ Web of Conferences, 32, 04009/1-6.

  61. Erckmann, V., WVII-AS Team, Kasparek, W., Müller, G.A., Schüller, P.G., and Thumm, M., 1990, Electron cyclotron resonance heating transmission line and launching system for the Wendelstein VII-AS stellarator. Fusion Technology, 17, 76-85.

    Article  Google Scholar 

  62. Erckmann, V., Dammertz, G., Dorst, D., Empacher, L., Förster, W., Gantenbein, G., Geist, T., Kasparek, W., Laqua, H.P., Müller, G.A., Thumm, M., Weissgerber, H., Wobig, H., W7-X and W7-AS Teams at IPP Garching, W7-X Team at FZK Karlsruhe, W7-X Team at IPF Stuttgart, 1999, ECRH and ECCD with high power gyrotrons at the stellarators W7-AS and W7-X. IEEE Trans. on Plasma Science, 27, 538-546.

    Article  Google Scholar 

  63. Kasparek, W., Erckmann, V., Laqua, H.P., Borie, E., Dammertz, G., Empacher, L., Förster, W., Gantenbein, G., Illy, S., Michel, G., Müller, G., Piosczyk, B., Thumm, M., Wagner, D., Weißgerber, M., Zohm, H., W7-X and W7-AS Teams at IPP Garching, W7-X Team at IPF Stuttgart, W7-X Team at FZK Karlsruhe, 1999, ECRH and ECCD for the stellarator W7-X. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 1, 185-204.

  64. Erckmann, V., Laqua, H.P., Maassberg, H., Geiger, J., Dammertz, G., Kasparek, W., Thumm, M., W7-X and W7-AS teams IPP, W7-X team FZK, W7-X team IPF, 2001, Electron cyclotron resonance heating and EC-current drive experiments at W7-AS, status at W7-X. Fusion Engineering and Design, 53, 365-375.

  65. Wanner, M., Erckmann, V., Feist, J.-H., Gardebrecht, W., Hartmann, D., Krampitz, R., Niedermeyer, H., Renner, H., Rummel, Th., Schauer, F., Wegener, L., Wesner, F., Müller, G.A., Kasparek, W., Thumm, M., Dammertz, G., 2003, Status of WENDELSTEIN 7-X construction, Nucl. Fusion, 43, 416-424.

    Article  Google Scholar 

  66. Dammertz, G., Braune, H., Erckmann, V., Gantenbein, G., Kasparek, W., Laqua, H.P., Leonhardt, W., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Thumm, M.K., 2004, Progress in the 10-MW ECRH system for the stellarator W7-X. IEEE Trans. on Plasma Science, 32, 144-151.

    Article  Google Scholar 

  67. Erckmann, V., Brand, P., Braune, H., Dammertz, G., Gantenbein, G., Kasparek, W., Laqua, H.P., Maassberg, H., Marushchenko, N.B., Michel, G., Thumm, M., Turkin, Y., Weissgerber, M., Weller, A., W7-X ECRH Team at IPP Greifswald, W7-X ECRH Team at FZK Karlsruhe and W7-X ECRH Team at IPF Stuttgart, 2007, Electron cyclotron heating for W7-X: physics and technology, Fusion Science and Technology, 52, 291-312.

    Article  Google Scholar 

  68. Erckmann, V., W7-X ECRH teams at IPP, IPF and FZK, 2007, The W7-X ECRH plant: status and recent achievements, Proc. 17th Topical Conf. on Radio Frequency Power in Plasmas, Clearwater, Florida, USA, AIP Conf. Proc., Vol. 933, 421-424.

    Google Scholar 

  69. Erckmann, V., Brand, P., Braune, H., Gantenbein, G., Kasparek, W., Laqua, H.P., Lechte, C., Marushchenko, N.B., Michel, G., Thumm, M., Turkin, Y., Weissgerber, M., and the W7-X ECRH-teams at IPP Greifswald, IPF Stuttgart and FZK Karlsruhe, 2008, The 10 MW, CW, ECRH-plant for W7-X: status and high power performance, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 1, pp. 60-69.

  70. Thumm, M., Brand, P., Braune, H., Dammertz, G., Erckmann, V., Gantenbein, G., Illy, S., Kasparek, W., Kern, S., Laqua, H.P., Lechte, C., Leonhardt, W., Marushchenko, N.B., Michel, G., Piosczyk, B., Schmid, M., Turkin, Y., Weisgerber, W., 2010, Status and high power performance of the 10-MW 140-GHz ECH system for the stellarator Wendelstein 7-X. Plasma and Fusion Research, 5, 1006/1-8.

    Article  Google Scholar 

  71. Geiger, J., Wolf, R.C., Beidler, C., Cardella, A., Chlechowitz, E., Erckmann, V., Gantenbein, G., Hathiramani, D., Hirsch, M., Kasparek, W., Kißlinger, J., König, R., Kornejew, P., Laqua, H.P., Lechte, C., Lore, J., Lumsdaine, A., Maaßberg, H., Marushchenko, N.B., Michel, G., Otte, M., Peacock, A., Sunn Pedersen, T., Thumm, M., Turkin, Y., Werner, A., Zhang, D., W7-X Team, 2013, Aspects of steady-state operation of the Wendelstein 7-X stellarator. Plasma Phys. Control. Fusion, 55, 014006.

    Article  Google Scholar 

  72. Thumm, M., 2014, The 1st decade of ECRH on Wendelstein Stellarators – A humorous retrospect. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, July 24-30, 2014, Nizhny Novgorod, Russia, pp. 26-27.

  73. Braune, H., Laqua, H.P., Marsen, S., Moseev, D., Noke, F., Purps, F., Schneider, N., Schulz, T., Stange, T., Uhren, P., W7-X ECRH Teams at IPP, IGVP Stuttgart and KIT Karlsruhe, 2016, Gyrotron operation during the first W7-X campaign – handling and reliability. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, H4B.2.

  74. Wolf, R.C., et al., 2016, Wendelstein 7-X program – Demonstration of a stellerator option for fusion energy. IEEE Trans. on Plasma Science, 44, 1466-1471.

    Article  Google Scholar 

  75. Wolf, R.C. et al., 2017, Major results from the first plasma campaign of the Wendelstein 7-X stellarator. Nuclear Fusion, 57, 102020 (13 pp).

    Article  Google Scholar 

  76. Wolf, R.C. et al., 2019, Electron-cyclotron-resonance heating in Wendelstein 7-X: A versatile heating and current-drive method and a tool for in-depth physics studies. Plasma Physics and Controlled Fusion, 61, 014037.

    Article  Google Scholar 

  77. Braune, H., Brunner, K.J., Laqua, H.P., Marsen, S., Moseev, D., Noke, Purps, F., Schneider, N., Schulz, T., Stange, T., Uhren, P., Wilde, F., W7-X Team at IPP, IGVP Stuttgart, KIT Karlsruhe, 2018, Concurrent operation of 10 gyrotrons at W7-X – experience and improvement opportunities. EPJ Web of Conferences, 187, 01003 (2 pp).

  78. Braune, H., Brunner, K.J., Laqua, H.P., Marsen, S., Moseev, D., Noke, F., Purps, F., Schneider, N., Schulz, T., Stange, T., Uhren, P., Wilde, W7-X Team at IPP, IGVP Stuttgart and KIT Karlsruhe, 2018, ECRH at W7-X - Concurrent operation of 10 gyrotrons. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, We-A2-4-5.

  79. Ohkubo, K., Kubo, S., Shimozuma, T., Idei, H., Sato, M., Yoshimura, Y., Mizuno, Y., Ito, S., Kobayashi, S., Takita, Y., Kaneko, O., Kawahata, K., Komori, A., Ohyabu, N., Yamada, H., Ikeda, K., Oka, Y., Osakabe, M., Takeiri, K., Tsumori, K., Kumazawa, R., Mutoh, T., Saito, K., M., Seki, T., Watari, T., Ashikawa, N., Emoto, M., de Vries, P.C., Funaba, H., Goto, M., Ida, K., Inagaki, S., Isobe, M., Kado, S., Kobuchi, T., Masuzaki, S., Minami, T., Miyazawa, J., Morisaki, T., Morita, S., Murakami, S., Mutoh, S., Nagayama, Y., Nakamura, Y., Nakanishi, H., Narihara, K., Nishimura, K., Noda, N., Ohdachi, S., Ozaki, T., Pavlichenko, R.O., Peterson, B.J., Sagara, A., Sakakibara, S., Sakamoto, R., Sasao, H., Sasao, M., Sato, K., Shoji, M., Sudo, S., Suzuki, H., Takechi, M., Tanaka, K., Toi, K., Tokuzawa, T., Yamada, I., Yamaguchi, S., Yamamoto, S., Yamazaki, K., Yokoyama, M., Watanabe, K.Y., Motojima, O., Fujiwara, M., 1999, Electron cyclotron plasma production and heating on LHD: system and its application. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 1, 27-40.

  80. Idei, H., Kubo, S., Shimozuma, T., Sato, M., Ohkubo, K., Yoshimura, Y., Takita, Y., Kobayashi, S., Ito, S., Mizuno, Y., Tsumori, K., Ikeda, K., Notake, T., Watari, T., Kaneko, O., Komori, A., Yamada, H., de Vries, P.C., Goto, M., Ida, K., Inagaki, S., Kado, S., Kawahata, K., Kobuchi, T., Minami, T., Miyazawa, J., Morisaki, T., Morita, S., Murakami, S., Muto, S., Nagayama, Y., Nakanishi, H., Narihara, K., Peterson, B.J., Sakakibara, S., Sasao, H., Sato, K., Tanaka, K., Takeiri, Y., Watanabe, K.Y., Yamada, I., Motojima, O., Fujiwara, M., LHD Experimental Group, 2001, Electron cyclotron heating scenario and experimental results in LHD. Fusion Engineering and Design, 53, 329-336.

    Article  Google Scholar 

  81. Shimozuma, T., Kubo, S., Idei, H., Yoshimura, Y., Notake, T., Watari, T., Mizuno, Y., Ito, S., Kobayashi, S., Takita, Y., Sato, M., Ohkubo, K., Ida, K., Ohyabu, N., Yamada, I., Narihara, K., Inagaki, S., Nagayama, Y., Takeiri, Y., Funaba, H., Yokoyama, M., Murakami, S., and the LHD Experimental Group, 2002, Recent results of ECH experiment by an upgraded heating system in LHD. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 307-319.

    Google Scholar 

  82. Igami, H., Notake, T., Yoshimura, Y., Shimozuma, T., Kubo, S., Ohkubo, K., Inagaki, S. and LHD Experimental Group, 2005, High power injection and steady state ECRH operation in LHD. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 2, 398-408.

    Google Scholar 

  83. Nishiura, M., Tanaka, K., Kubo, S., Saito, T., Tatematsu, Y., Notake, T., Kawahata, K., Shimozuma, T., Mutoh, T., 2008, Design of collective Thomson scattering system using 76th7 GHz gyrotron for bulk and tail ion diagnostics in the large helical device, Review of Scientific Instruments, 79, 10E731-1 – 10E731-3.

    Google Scholar 

  84. Thumm, M., 1994, Progress in the development of high-power millimeter- and submillimeter wave gyrotrons and of free electron masers. Archiv für Elektrotechnik 77, 51-55.

    Article  Google Scholar 

  85. Thumm, M., 1995, Advanced electron cyclotron heating systems for next step fusion experiments. Fusion Engineering and Design, 30, 139-170.

    Article  Google Scholar 

  86. Thumm, M., 1997, Recent development of high power gyrotrons and windows for EC wave applications. Proc. 12th Topical Conf. on Radio Frequency Power in Plasmas, Savannah, Georgia, USA, AIP Conference Proceedings 403, 183-190.

    Article  Google Scholar 

  87. Thumm, M., 1997, Present developments and status of electron sources for high power gyrotron tubes and free electron masers. Applied Surface Science, 111, 106-120.

    Article  Google Scholar 

  88. Thumm, M., 1998, State-of-the-art and recent developments of high-power gyrotron oscillators. Proc. Radio Frequency Workshop (RF 98), High Energy Density Microwaves, Pajaro Dunes, California, USA, AIP Conference Proceedings 474, 146-162.

    Google Scholar 

  89. Thumm, M., 2003, MW gyrotron development for fusion plasma applications. Plasma Phys. Control. Fusion, 45, A143-A161.

    Article  Google Scholar 

  90. Thumm, M., Alberti, S., Arnold, A., Bariou, D., Dammertz, G., Darbos, C., Dumbrajs, O., Gantenbein, G., Erckmann, V., Giguet, E., Heidinger, R., Hogge, J.-P., Illy, S., Jin, J., Kasparek, W., Liévin, C., Magne, R., Michel, G., Piosczyk, B., Prinz, O., Rzesnicki, T., Schwörer, K., Tran, M.Q., Yang, X., Yovchev, I., 2005, Gyrotron development in the EU for present fusion experiments and for ITER. Proc. 7th Workshop on High Energy Density and High Power RF, AIP Conference Proceedings 807, 2006, 167-179.

  91. Dammertz, G., Alberti, A., Arnold, A., Bariou, D., Brand, P., Braune, H., Erckmann, V., Dumbrajs, O., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.-Ph., Illy, S., Jin, J., Kasparek, W., Koppenburg, K., Laqua, H.P., Legrand, F., Leonhardt, W., Liévin, Ch., Michel, G., Neffe, G., Piosczyk, B., Prinz, O., Rzesnicki, T., Schmid, M., Thumm, M., Tran, M.Q., Yang, X., Yovchev, I., 2006, High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications, IEEE Trans. on Plasma Science, 34, 173-186.

    Article  Google Scholar 

  92. Jelonnek, J., Alberti, S., Avramidis, K., Braune, H., Erckmann, V., Gantenbein, G., Hogge, J.P., Illy, S., Jin, J., Kern, S., Noke, F., Pagonakis, I., Piosczyk, B., Purps, F., Rzesnicki, T., Samartsev, A., Schlaich, A., Schmid, M., Thumm, M., 2012, High power gyrotron development at KIT for ECH&CD of fusion plasmas, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, pp. 111-112.

  93. Jelonnek, J., Alberti, S., Avramidis, K., Erckmann, V., Gantenbein, G., Hesch, K., Hogge, J.-P., Illy, S., Jin, J., Kern, S., Pagonakis, I., Piosczyk, B., Rzesnicki, T., Samartsev, A., Thumm, M., W7-X teams at KIT, IPF Stuttgart, IPP Greifswald, EGYC teams at KIT, EPFL-CRPP, HELLAS, IPF-CNR, 2013, Development of advanced gyrotrons in Europe. Fusion Science and Technology, 64, 505-512.

  94. Jelonnek, J., Avramidis, K., Franck, J., Gantenbein, G., Hesch, K., Illy, S., Jin, J., Malygin, A., Pagonakis, I., Rzesnicki, T., Samartsev, A., Scherer, T., Schlaich, A., Schmid, M., Strauss, D., Thumm, M., Zhang, J., 2013, KIT gyrotron development for future fusion applications. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo10-3.

  95. Jelonnek, J., Albajar, F., Alberti, S., Avramidis, K., Benin, P., Bonicelli, T., Cismondi, F., Erckmann, V., Gantenbein, G., Hesch, K., Hogge, J.-P., Illy, S.,.Ioannidis, Z.C., Jin, J., Laqua, H., Latsas, G.P., Legrand, F., Michel, G., Pagonakis, I.Gr., Piosczyk, B., Rozier, Y., Rzesnicki, T., Tigelis, I.G., Thumm, M., Tran, M.Q., Vomvoridis, J.L., 2014, From series production of gyrotrons for W7-X toward EU-1 MW gyrotrons for ITER. IEEE Trans. on Plasma Science, 42, No. 5, 1135-1144.

    Google Scholar 

  96. Jelonnek, J., Avramidis, K., Franck, J., Gantenbein, G., Hesch, K., Jin, J., Kalaria, P., Pagonakis, I.Gr., Rzesnicki, T., Schmid, M., Thumm, M., 2014, Development of advanced gyrotrons. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W3_D-25.1.

  97. Jelonnek, J., Aiello, G., Avramidis, K., Franck, J., Gantenbein, G., Grossetti, G., Hesch, K., Illy, S., Jin, J., Kalaria, P., Pagonakis, I.Gr., Rzesnicki, T., Ruess, S., Samartsev, A., Scherer, T., Strauss, D., Wu, C., Thumm, M., Alberti, S., Braunmueller, F., Genoud, J., Hogge, J.-P., Schlatter, C., Tran, T.-M., Tran, M.Q., Chelis, I., Vomvoridi, J.L., Ioannidis, Z.C., Latsas, G., Tigelis, I.G., Bruschi, A., Lontano, M., Hermann, V., Legrand, F., Rozier, Y., Albajar, F., Bonicelli, T., Cismondi, F., 2015, From W7-X towards ITER and beyond: Status and progress in EU fusion gyrotron developments. 16th IEEE International Vacuum Electronics Conference (IVEC 2015), Beijing, P.R. China, S23.2.

  98. Jelonnek, J., Aiello, G., Alberti, S., Avramidis, K., Bertinetti, A., I.G., Bruschi, A., Chelis, J., Franke, T., Gantenbein, G., Garavaglia, S., Granucci, G., Grossetti, Illy, S., Ioannidis, Z.C., Jin, J., Kalaria, P., Latsas, G.P., Laqua, H., Leggieri, A., Legrand, F., Marek, A., Pagonakis, I.Gr., Peponis, D., Savoldi, L., Rzesnicki, Ruess, S., Ruess, T., Scherer, T., Schmid, M., Strauss, D., Tigelis, I., Thumm, M., Tran, M.Q., Wilde, F., Wu, C., Zanino, R., Zein, A., 2017, European research activities towards a future DEMO gyrotron. EPJ Web of Conferences, 149, 04007 (2 pp).

  99. Jelonnek, J., Aiello, G., Avramidis, K., Gantenbein, G. Grossetti, G., Illy, S., Ioannidis, Z.C., Jin, J., Kalaria, P., Marek, A., Pagonakis, I.G., Rzesnicki, T., Ruess, S., Scherer, T., Schmid, M., Strauss, D., Thumm, M., Wilde, F., Wu, C., Zein, A., 2017, Developments of fusion gyrotrons for W7-X, ITER and EU DEMO: Ongoing activities and future plans of KIT. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, WC2.1 (Invited).

  100. Dumbrajs, O., Nusinovich, G.S., 2004, Coaxial gyrotrons: past, present, and future (review). IEEE Trans. on Plasma Science, 32, 934-946.

    Article  Google Scholar 

  101. Thumm, M., Kasparek, W., 1995, Recent advanced technology in electron cyclotron heating systems. Fusion Engineering and Design, 26, 291-317.

    Article  Google Scholar 

  102. Thumm, M.K., Kasparek, W., 2002, Passive high-power microwave components. IEEE Trans. on Plasma Science, 30, 755-786.

    Article  Google Scholar 

  103. Henle, W., Jacobs, A., Kasparek, W., Kumric, H., Müller, G.A., Schüller, P.G., Thumm, M., Engelmann, F., Rebuffi, L., 1991, Conceptual study of multi-megawatt millimeter wave transmission and antenna systems for electron cyclotron wave applications in NET/ITER. Fusion Technology 1990, eds. B.E. Keen, M. Huguet, R. Hemsworth. Elsevier Science Publishers B.V., 238-242.

  104. Kasparek, W., Petelin, M., Erckmann, V., Shchegolkov, D., Bruschi, A., Cirant, S., Litvak, A., Thumm, M., Plaum, B., Grünert, M. Malthaner, M., ECRH Groups at IPP Greifswald, FZK Karlsruhe, IPF Stuttgart, 2007, Fast switching and power combination of high-power electron cyclotron wave beams: principles, numerical results, and experiments, Fusion Science and Technology, 52, 281-290.

    Article  Google Scholar 

  105. Alberti, S., Tran, M.Q., Hogge, J.P., Tran, T.M., Bondeson, A., Muggli, P., Perrenoud, A., Jödicke, B., Mathews, H.G., 1990, Experimental measurements on a 100 GHz frequency tunable quasi-optical gyrotron. Phys. Fluids, B2, 1654-1661.

    Article  Google Scholar 

  106. Hogge, J.P., Tran, T.M., Paris, P.J., Tran, M.Q., 1996, Operation of a quasi-optical gyrotron with a gaussian output coupler. Phys. Plasmas, 3, 3492-3500.

    Article  Google Scholar 

  107. Kreischer, K.E. Temkin, R.J., 1987, Single-mode operation of a high-power, step-tunable gyrotron. Phys. Rev. Lett., 59, 547-550.

    Article  Google Scholar 

  108. Kurbatov, V.I., Malygin, S.A., Vasilyev, E.G., 1990, Commercial gyrotrons for thermo-nuclear investigations. Proc. Int. Workshop on Strong Microwaves in Plasmas, Suzdal, Inst. of Applied Physics, Nizhny Novgorod, 1991, 765-772.

    Google Scholar 

  109. Bogdanov, S.D., Kurbatov, V.I., Malygin, S.A., Orlov, V.B., Tai, E.M., 1993, Industrial gyrotrons development in Salut. Proc. 2nd Int. Workshop on Strong Microwaves in Plasmas, Moscow - Nizhny Novgorod - Moscow, ed. A.G. Litvak, Inst. of Applied Physics, Nizhny Novgorod, 1994, Vol. 2, 830-835. Zapevalov, V.E., Malygin, S.A., Pavelyev, V.G., Tsimring, Sh.E., 1984, Coupled resonator gyrotrons with mode conversion. Radiophys. Quantum Electron., 27, 846-852.

    Google Scholar 

  110. Braz, O., Dammertz, G., Kuntze, M., Thumm, M., 1997, D-band frequency step-tuning of a 1 MW gyrotron using a Brewster output window. Int. J. Infrared and Millimeter Waves, 18, 1465-1477.

    Article  Google Scholar 

  111. Braz, O., Dammertz, G., Henry, S., Kuntze, M., Sato, M., Shimozuma, T., Thumm, M., 1998, Frequency step-tuned operation of a 1 MW, D-band gyrotron using a Brewster output window. Proc. 8th ITG-Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 150, 299-304.

    Google Scholar 

  112. Thumm, M., Borie, E., Braz, O., Dammertz, G., Dumbrajs, O., Koppenburg, K., Kuntze, M., Piosczyk, B., 1999, 1.6 MW frequency step-tunable D-band gyrotron. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 591-609.

    Google Scholar 

  113. Dammertz, G., Dumbrajs, O., Koppenburg, K., Piosczyk, B., Thumm, M., 2000, Frequency-step-tunable high-power gyrotrons for plasma physics applications. J. Comm. Tech. and Electronics, 45, S60-S64.

    Google Scholar 

  114. Dumbrajs, O., Nusinovich, G.S., 1992, Theory of a frequency-step-tunable gyrotron for optimum plasma ECRH. IEEE Trans. Plasma Science, 20, 452-457.

    Article  Google Scholar 

  115. Thumm, M., Arnold, A., Borie, E., Braz, O., Dammertz, G., Dumbrajs, O., Koppenburg, K., Kuntze, M., Michel, G., Piosczyk, B., 2001, Frequency step-tunable (114-170 GHz) megawatt gyrotrons for plasma physics applications. Fusion Engineering and Design, 53, 407-421.

    Article  Google Scholar 

  116. Koppenburg, K., Dammertz, G., Kuntze, M., Piosczyk, B., Thumm, M., 2001, Fast frequency-step-tunable high-power gyrotron with hybrid-magnet-system. IEEE Trans. on Electron Devices, 48, 101-107.

    Article  Google Scholar 

  117. Samartsev, A., Gantenbein, G., Dammertz, G., Illy, S., Kern, S., Leonhardt, W., Schlaich, A., Schmid, M., Thumm, M., 2011, Development of frequency step tunable 1 MW gyrotron at 131 to 146.5 GHz, Proc. 12th IEEE Int. Vacuum Electronics Conference (IVEC 2011), Bangalore, India, P2.22., 269-270.

    Google Scholar 

  118. Gantenbein, G., Dammertz, G., Jelonnek, J., Losert, M., Samartsev, A. Schlaich, A., Scherer, T., Strauss, D., Thumm, M., Wagner, D., 2013, Operation of a step-frequency tunable gyrotron with a diamond Brewster angle output window. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 7A-2.

  119. Samartsev, A., Dammertz, G., Gantenbein, G., Jelonnek, J., Schlaich, A., Thumm, M., 2013, First operation of a D-band megawatt gyrotron with elliptically brazed diamond window. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo P1-61.

  120. Gantenbein, G., Samartsev, A., Aiello, G., Dammertz, G., Jelonnek, J., Losert, M., Schlaich, A., Scherer, T., Strauss, D., Thumm, M., Wagner, D., 2014, First operation of a step-frequency tunable 1 MW gyrotron with a diamond Brewster angle output window. IEEE Trans. on Electron Devices, 61, No. 6, 1806-1811.

    Google Scholar 

  121. Samartsev, A., Avramidis, K.A., Gantenbein, G., Dammertz, G., Thumm, M., Jelonnek, J., 2015, Efficient frequency step-tunable megawatt-class D-band gyrotron. IEEE Trans. on Electron Devices, 62, No. 7, 2317-2332.

    Google Scholar 

  122. Gantenbein, G., Samartsev, A., Avramidis, K.A., Dammertz, G., Thumm, M., Jelonnek, J., 2015, Efficient frequency step-tunable megawatt-class D-band gyrotron. 40th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, W2E-1.

    Google Scholar 

  123. Kuftin, A.N., Bogdashov, A.A., Chirkov, A.V., Denisov, G.G., Lygin, V.K., Moiseev, M.A., Zapevalov, V.E., 2001, Development of frequency step tunable 105-170 GHz 1 MW gyrotron. Conf. Digest, 26th Int. Conf. on Infrared and Millimeter Waves, Toulouse, France, 5-230-5-233.

  124. Zapevalov, V.E., Bogdashov, A.A., Chirkov, A.V., Denisov, G.G., Kuftin, A.N., Lygin, M.A., Moiseev, M.A., 2002, Optimization of the frequency step tunable 105-170 GHz 1 MW gyrotron prototype. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 1-2.

    Google Scholar 

  125. Zapevalov, V.E., Bogdashov, A.A., Denisov, G.G., Kuftin, A.N., Lygin, V.K., Moiseev, M.A., Chirkov, A.V., 2004, Development of a prototype of a 1-MW 105-156-GHz multi-frequency gyrotron. Radiophysics and Quantum Electronics, 47, 396-404.

    Article  Google Scholar 

  126. Popov, L.G., Agapova, M.V., Bogdashov, A.A., Denisov, G.G., Gnedenkov, A.Ph., Ilyin, V.I., Ilyin, V.N., Khmara, D.V., Kuftin, A.N., Litvak, A.G., Malygin, S.A., Malygin, V.I., Myasnikov, V.E., Nichiporenko, V.O., Pavelyev, A.B., Rischin, Yu.V., Shamanova, N.A., Solujanova, E.A., Tai, E.M., Usachev, S.V., Zapevalov, V.E., 2005, Status of multi-frequency 105-140 GHz/1 MW/10 s gyrotron and recent test results. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 119-124.

    Google Scholar 

  127. Denisov, G.G., Litvak, A.G., Myasnikov, V.E., Tai, E.M., Zapevalov, V.E., Agapova, M.V., Chirkov, A.V., Kuftin, A.N., Malygin, S.A., Malygin, V.I., Nichiporenko, V.O., Pavel'ev, A.B., Parshin, V.V., Soluyanova, E.A., Ilin, V.I., Ilin, V.N., Vikharev, A.L., Usachev, S.V., Usov, V.G., 2008, Development in Russia of high power gyrotrons for plasma fusion installations, Proc. 9th IEEE Int. Vacuum Electronics Conference (IVEC 2008), Monterey, CA, USA, 26-27.

  128. Denisov, G.G., Litvak, A.G., Agapova, M.V., Myasnikov, V.E., Tai, E.M., Zapevalov, V.E., Chirkov, A.V., Kuftin, A.N., Malygin, S.A., Malygin, V.I., Nicniporenko, V.O., Kazansky, I.V., Kruglov, A.V., Rukavishikova, V.G., Knedenkov, A.F., Pavel'ev, A.B., Parsin, V.V., Popov, L.G., Sokolov, E.V., Soluyanova, E.A., Ilin, V.I., Ilin, V.N., Vikharev, A.L., Shamanova, N.A., Usachev, S.V., 2008, Multi-frequency gyrotrons for plasma fusion installations, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, T2A1.1468.

  129. Litvak, A.G., 2008, High power gyrotrons: development and applications, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, R1P1.1734.

  130. Denisov, G.G., Litvak, A.G., Myasnikov, V.E., Tai, E.M., Zapevalov, V.E., 2008, Development in Russia of high-power gyrotrons for fusion. Nucl. Fusion, 48, 054007 (5 pp).

    Article  Google Scholar 

  131. Denisov, G.G., Litvak, A.G., Myasnikov, V.E., Tai, E.M., Ilin, V.I., Zapevalov, E.V., 2008, Gyrotrons for fusion research. State of the art and progress trends, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Acad. of Sciences, Nizhny Novgorod, 2009, Vol. 1, pp. 15-26.

  132. Kazansky, I.V., Kruglov, A.V., Malygin, S.A., Orlov, V.B., Solujanova, E.A., Tai, E.M., Belousov, V.I., Chirkov, A.V., Denisov, G.G., Malygin, V.I., Pavelev, A.B., Sokolov, E.V., 2008, Step-tunable experimental gyrotrons at 75 GHz and 140 GHz ranges, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 1, pp. 100-102.

  133. Litvak, A.G., Denisov, G.G., Myasnikov, V.E., Tai, E.M., Azizov, E.A., Ilin, V.I., 2011, Development in Russia of megawatt power gyrotrons for fusion, J. of Infrared Milli Terahz Waves, 32, 337-342.

    Article  Google Scholar 

  134. Litvak, A.G., Denisov, G.G., Myasnikov, V.E., Tai, E.M., Sokolov, E.V., Ilin, V.I., 2012, Recent development results in Russia of megawatt power gyrotrons for plasma fusion installations. EPJ Web of Conferences, 32, 04003/1-7.

    Article  Google Scholar 

  135. Khvostenko, A.P., Denisov, G.G., Ilin, V.I., Khvostenko, P.P., Kochin, V.A., Malygin, V.I., Myasnikov, V.E., Popov, L.G., Soluyanova, E.A., Tai, E.M., Usachev, S.V., 2012, Test bench for ITER gyrotrons. Measurements of the RF power value during tests of the ITER-prototype gyrotrons. EPJ Web of Conferences, 32, 04021/1-6.

    Google Scholar 

  136. Denisov, G.G., Litvak, A.G., Zapevalov, V.E., Myasnikov, V.E., Tai, E.M., Popov, L.G., Nichiporenko, V.O., Usachev, S.V., Soluyanova, E.A., Kazansky, I.V., Kruglov, A.V., Sokolov, E.V., Ilin, V.I., 2013, Recent results in development in Russia of megawatt power gyrotrons for fusion. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 6A-1.

  137. Litvak, A.G., Denisov, G.G., Myasnikov, V.E., Tai, E.M., Sokolov, E.V., Ilin, V.I., 2013, New results of megawatt power gyrotrons development. Proc. 38th Int. Conf. on Infrared, Millim. and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Tu1-4.

  138. Denisov, G.G., Litvak, A.G., Bakunin, V.L., Chirkov, A.V., Kuftin, A.N., Malygin, V.I., Novozhilova, Yu.V., Zapevalov, V.E., Tai, E.M., Myasnikov, V.E., Popov, L.G., Soluyanova, E.A., Agapova, M.V., Belov, Yu.N., Kazansky, I.V., Kruglov, A.V., Nichiporenko, V.O., Sokolov, E.V., Usachev, S.V., Roy, I.N., 2014, New results and new trends in development of gyrotrons for fusion. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W3_D-25.4.

  139. Denisov, G.G., 2014, Development of gyrotrons for fusion – New results and new trends. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 7-8.

  140. Denisov, G.G., 2017, Development of gyro-devices at IAP/GYCOM. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, GI-1.

  141. Popov, L.G., Chirkov, A.V., Denisov, G.G., Litvak, A.G., Malygin, V.I., Zapevalov, V.E., Agapova, M.V., Belov, Yu.N., Kazansky, I.V., Kuzmin, A.V., Myasnikov, V.E., Nichiporenko, V.O., Sokolov, E.V., Soluyanova, E.A., Tai, E.M., Usachev, S.V., 2017, Super-high power gyrotrons for electron cyclotron plasma heating. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, GI-2.

  142. Denisov, G.G., 2017, New trends in gyrotron development. EPJ Web of Conferences, 149, 01001 (2 pp).

    Article  Google Scholar 

  143. Golubev, S.V., Razin, S.V., Semenov, V.E., Smirnov, A.N., Vodopyanov, A.V., Zorin, V.G., 1999, Sources of soft X-rays and multicharged ions based on ECR discharge in heavy gases sustained by high-power gyrotron radiation. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 1, 347-355.

    Google Scholar 

  144. Golubev, S.V., Luchin, V.I., Razin, S.V., Salaschenko, N.N., Smirnov, A.N., Vodopyanov, A.V., Zorin, V.G., 1999, Mirror-trapped plasma heated by powerful millimeter wave radiation as an ECR source of soft X-rays. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 1, 356-370.

    Google Scholar 

  145. Bohanov, A.F., Golubev, S.V., Izotov, I.V., Razin, S.V., Sidorov, A.V., Skalyga, V.A., Vodopyanov, A.V., Zorin, V.G., 2005, ECR ion source with quasi-gasdynamic plasma confinement regime. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 2, 657-665.

    Google Scholar 

  146. Vodopyanov, A.V., Golubev, S.V., Mansfeld, D.A., Nikolaev, A.G., Oks, E.M., Khizhnyak, V.I., Yushkov, G.Yu., 2007, Multiple ionization of vacuum-arc-generated metal ions in a magnetic trap heated by high-power microwave radiation. Techn. Phys. Letters, 33, 44-49.

    Article  Google Scholar 

  147. Ciavola, G., Gammino, S., Celona, L., 2008, ECR multicharged ion sources of new generation, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 2, pp. 442-453.

  148. Zorin, V.G., Bokhanov, A.F., Golubev, S.V., Izotov, I.V., Mansfeld, D.A., Razin, S.V., Sidorov, A.V., Skalyga, V.A., Vodopyanov, A.V., 2008, Gasdynamic ECR sources of multicharged ions, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 2, pp. 587-591.

    Google Scholar 

  149. Zorin, V.G., Skalyga, V.A., Izotov, I.V., Razin, S.V., Sidorov, A.V., Lamy, T., Thuillier, T., 2011, ECR breakdown of heavy gases in open mirror trap. Transactions of Fusion Science and Technology, 59, 140-143.

    Article  Google Scholar 

  150. Yushkov, G.Yu., Savkin, K. P , Nikolaev, A.G., Oks, E.M., Vodopyanov, A.V., Izotov, I.V., Mansfeld, D.A., 2011, Formation of multicharged metal ions in vacuum arc plasma heated by gyrotron radiation. Plasma Science and Technology, 13, No. 5, 596-599.

  151. Vodopyanov, A.V., Izotov, I.V., Mansfeld, D.A., Yushkov, G. Yu., 2012, Multicharged ion source based on Penning-type discharge with electron cyclotron resonance heating by millimeter waves. Review of Scientific Instruments, 83, 02A325 (3 pp).

  152. Higurashi, Y., Ohnishi, J., Nakagawa, T., Haba, H., Tamura, M., Aihara, T., Fujimaki, M., Komiyama, M., Uchiyama, A., Kamigaito, O., 2012, Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source. Review of Scientific Instruments, 83, 02A333 (3 pp).

  153. Chkhalo, N.I., Golubev, S.V., Mansfeld, D., Salashchenko, N.N., Sjmaenok, L.A., Vodopyanov, A.V., 2012, Source for extreme ultraviolet lithography based on plasma sustained by millimeter-wave gyrotron radiation. J. Micro/Nanolith. MEMS MOEMS, 11, 021123 (7 pp).

    Google Scholar 

  154. Yushkov, G.Yu., Vodopyanov, A.V., Nikolaev, A.G., Izotov, I.V., Savkin, K.P., Golubev, S.V., Oks, E.M., 2013, Gyrotron microwave heating of vacuum arc plasma for high-charge-state metal ion beam generation. IEEE Trans. on Plasma Science, 41, No. 8, 2081-2086.

    Google Scholar 

  155. Glyavin, M.Yu., Golubev, S.V., Izotov, I.V., Litvak, A.G., Luchinin, A.G., Razin, S.V., Sidorov, A.V., Skalyga, V.A., Vodopyanov, A.V., 2014, A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow, sustained by powerful gyrotron radiation of terahertz frequency band. Applied Physics Letters, 105, 174101 (4 pp).

    Article  Google Scholar 

  156. Glyavin, M.Yu., Golubev, S.V., Sidorov, A.V., Razin, S.V., Fokin, A.P., Luchinin, A.G., Litvak, A.G., Morozkin, M.V., Vodopyanov, A.V., Semenov, V.E., Rakova, E.I., Nusinovich, G.S., Tsvetkov, A.I., 2015, Experimental investigation of powerful THz gyrotrons for initiation of localized gas discharge. 40th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, WS-5.

  157. Skalyga, V., Izotov, I., Golubev, S., Vodopyanov, A., Tarvainen, O., 2016, First experiments with gasdynamic ion source in CW mode. Review of Scientific Instruments, 87, 02A715 (3 pp).

  158. Skalyga, V., Izotov, I., Golubev, S., Sidorov, A., Razin, S., Vodopyanov, A., Tarvainen, O., Koivisto, H., Kalvas, T., 2016, New progress of high current gasdynamic ion source (invited). Review of Scientific Instruments, 87, 02A716 (4 pp).

  159. Skalyga, V.A., Izotov, I.V., Sidorov, A.V., Golubev, S.V., Razin, S.V., 2017, Study of hydrogen ECR plasma in a simple mirror magnetic trap heated by 75 GHz pulsed gyrotron radiation. Review of Scientific Instruments, 88, 033503 (5 pp).

    Article  Google Scholar 

  160. Sidorov, A.V., Zorin, V.G., Izotov, I.V., Razin, S.V., Skalyga, V.A., 2010, Generation of high-current beam of multiply charged ions from a dense plasma produced by high-power millimeter-wave gyrotron radiation under ECR conditions. Technical Physics, 55, No. 10, 1540-1542.

    Google Scholar 

  161. Sun, L., Zhao, H.W., Guo, J.W., 2017, Gyrotron frequency ECRIS development and future challenges. EPJ Web of Conferences, 149, 02005 (2 pp).

    Article  Google Scholar 

  162. Tsvetkov, A.I., Eremeev, A.G., Kholoptsev, V.V., Shmelev, M.Yu., Plotnikov, Yu.V., Bykov, Y.V., Kopelovich, E.A., Novikov, A.Yu., Troitskiy, M.M., Kuznetsov, M.V. Zhurin, K.A., Fokin, A.P., Morozkin, M.V., Glyavin, M.Yu., Bakulin, M.I., Denisov, G.G., Soluyanova, E.A., Tai, E.M., 2017, 45 GHz/20 kW gyrotron-based setup with automated output power control for ECR ion source. EPJ Web of Conferences, 149, 04032 (2 pp).

    Article  Google Scholar 

  163. Glyavin, M., Tsvetkov, A., Eremeev, A., Kholoptsev, V., Bykov, Y., Denisov, G., Kopelovich, E., Tai, E.M., 2017, 45 GHz/20 kW gyrotron-based microwave generator for ECR ion source. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, RD36.

  164. Denisov, G.G., Glyavin, M.Yu., Tsvetkov, A.I., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Bykov, Y.V., Orlov, V.B., Morozkin, M.V., Shmelev, M.Yu., Kopelovich, A.A., Troitskiy, M.M., Kuznetsov, M.V., Zhurin, K.A., Novikov, A.Yu., Bakulin, M.I., Sobolev, D.I., Tai, E.M., Soluyanova, E.A., Sokolov, E.V., 2018, A 45 GHz/20 kW gyrotron-based microwave setup for the fourth-generation ECR ion sources. IEEE Trans. on Electron Devices, 2018, 65, No. 9, 3963-3969.

    Google Scholar 

  165. Zhao, H.W., Sun, L.T., Guo, J.W., Zhang, W.H., Lu, W., Wu, W., Wu, B.M., Sabbi, G., Juchno, M., Hafalia, A., Ravaioli, E., Xie, D.Z., 2018, Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR. Review of Scientific Instruments, 89, No. 5, 052301 (10 pp).

    Article  Google Scholar 

  166. Flyagin, V.A., Kuftin, A.N., Luchinin, A.G., Nusinovich, G.S., Pankratova, T.B., Zapevalov, V.E., 1989, Gyrotrons for electron cyclotron heating and active plasma diagnostics. Proc. Joint IAEA Techn. Committee Meeting on ECE and ECRH (EC-7 Joint Workshop), Hefei, P.R. China, 355-372.

  167. Flyagin, V.A., Luchinin, A.G., Nusinovich, G.S., 1983, Submillimeter-wave gyrotrons: theory and experiment. Int. J. Infrared and Millimeter Waves, 4, 629-637.

    Article  Google Scholar 

  168. Glyavin, M.Yu., Luchinin, A.G., 2007, A terahertz gyrotron with pulsed magnetic field, Radiophysics and Quantum Electronics, 50, 755-761.

    Article  Google Scholar 

  169. Glyavin, M.Yu., Luchinin, A.G., Golubiatnikov, G.Yu., 2008, Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field, Physical Review Letters, 100, 015101(3 pp).

  170. Glyavin, M.Yu., Luchinin, A.G., 2008, 1.3 THz gyrotron with a pulsed magnet, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 1, pp. 108-116.

  171. Glyavin, M.Yu., Luchinin, A.G., 2009, Powerful terahertz gyrotrons based on pulsed magnets. Terahertz Science and Technology, 2, 150-155.

    Google Scholar 

  172. Bratman, V., Glyavin, M., Idehara, T., Kalynov, Y., Luchinin, A., Manuilov, V., Mitsudo, S., Ogawa, I., Saito, T., Tatematsu, Y., Zapevalov, V., 2009, Review of subterahertz and terahertz gyrodevices at IAP RAS and FIR FU, IEEE Trans. on Plasma Science, 37, 36-43.

    Article  Google Scholar 

  173. Bratman, V.L., Kalynov, Yu.K., Manuilov, V.N., 2009, Large-orbit gyrotron operation in the terahertz frequency range, Physical Review Letters, 102, 245101-1 – 2045101-4.

    Google Scholar 

  174. Bratman, V.L., Glyavin, M.Yu., Kalynov, Yu.K., Litvak, A.G., Luchinin, A.G., Savilov, A.V., Zapevalov, V.E., 2011, Terahertz gyrotrons at IAP RAS: Status and new designs, J. of Infrared Milli Terahz Waves, 32, 371-379.

    Article  Google Scholar 

  175. Glyavin, M.Yu., Luchinin, A.G., 2011, High power pulsed terahertz gyrotrons, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 59-60.

  176. Bratman, V.L., Bogdashov, A.A., Denisov, G.G., Glyavin, M.Yu., Kalynov, Yu.K., Luchinin, A.G., Manuilov, V.N., Zapevalov, V.E., Zavolsky, N.A., Zorin, V.G., 2012, Gyrotron development for high power THz technologies at IAP RAS. J. Infrared Milli Terahz Waves, 33, 715-723.

    Article  Google Scholar 

  177. Glyavin, M.Yu., Denisov, G.G., Zapevalov, V.E., Kuftin, A.N., Luchinin, A.G., Manuilov, V.N., Morozkin, M.V., Sedov, A.S., Chirkov, A.V., 2014, Terahertz gyrotrons: State of the art and prospects. J. Communications Technology and Electronics, 59, No. 8, 792-797.

    Google Scholar 

  178. Glyavin, M.Yu., 2017, Development and applications of THz gyrotrons. EPJ Web of Conferences, 149, 01008 (2 pp).

    Article  Google Scholar 

  179. Glyavin, M., Denisov, G., 2017, Development of high power THz band gyrotrons and their applications in physical research. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, RC2.1.

  180. Glyavin, M.Yu., Denisov, G.G., Khazanov, E.A., 2018, From millimeter to microns – IAP RAS powerful sources for various applications. EPJ Web of Conferences, 195, 00001 (2 pp).

    Article  Google Scholar 

  181. Glyavin, M., Denisov, G., 2018, Terahertz gyrotrons with unique parameters. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, We-A2-4-1.

  182. Idehara, T., Tatsukawa, T., Ogawa, I., Shimizu, Y., Nishida, N., Yoshida, K., 1996, Development and applications of submillimeter wave gyrotrons. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 634-659.

    Google Scholar 

  183. Ogawa, I., Iwata, M., Idehara, T., Kawahata, K., Iguchi, H., Ejiri, A., 1997, Plasma scattering measurement using a submillimeter wave gyrotron (Gyrotron FUII) as a power source. Fusion Engineering and Design, 34-35, 455-458.

    Article  Google Scholar 

  184. Shimizu, Y., Ichikawa, K., Shibutani, K., Karuhashi, K., Tatsukawa, T., Idehara, T., Ogawa, I., Okazaki, Y., Okamoto, T., 1997, Submillimetre wave gyrotron (Gyrotron FU IV) for plasma diagnostics. Fusion Engineering and Design, 34-35, 459-462.

    Article  Google Scholar 

  185. Idehara, T., Ogawa, I., Mitsudo, S., Sabchevski, S., Kitai, A., Kitai, K., 2001, Development and applications of submillimeter wave gyrotrons (FU Series). Proc. 9th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 165, 177-182.

    Google Scholar 

  186. Idehara, T., Kamada, M., Tsuchiya, H., Hayashi, T., Agusu, La, Mitsudo, S., Ogawa, I., Manuilov, V.N., Naito, K., Yuyama, T., Jiang, W., Yatsui, K., 2005, Development of THz gyrotrons in FIR FU. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 141-149.

    Google Scholar 

  187. Idehara, T., Saito, T., Ogawa, I., Mitsudo, S., Tatematsu, Y., 2008, THz gyrotrons – FU CW series for high power THz technologies, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, M2A3.1267.

  188. Notake, T., Saito, T., Tatematsu, Y., Kubo, S., Shimozuma, T., Tanaka, K., Nishiura, M., Fujii, A., Agusu, L., Ogawa, I., Idehara, T., 2008, Subterahertz gyrotron developments for collective Thomson scattering in LHD. Review of Scientific Instruments, 79, 10E732-1-3.

  189. Idehara, T., Ogawa, I., Mitsudo, S., Tatematsu, Y., Saito, T., 2008, Development and applications of THz gyrotrons, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 1, pp. 40-46.

  190. Idehara, T., Ogawa, I., Mitsudo, S., Tatematsu, Y., Furuya, T., Saito, T., 2009, High power THz technologies using gyrotrons as radiation sources, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, W3D01.0047.

  191. Notake, T., Saito, T., Tatematsu, Y., Fujii, A., Ogasawara, S., La Augusu, Ogawa, I., Idehara, T., 2009, Development of a novel high power sub-THz second harmonic gyrotron, Physical Review Letters, 225002-1-4.

  192. Saito, T., Notake, T., Tatematsu, Y., Fujii, A., Ogasawara, S., Agusu, L., Idehara, T., Manuilov, V.N., 2009, Generation of high power sub terahertz radiation from a gyrotron at second harmonic resonance, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, R4D05.0089.

  193. Saito, T., Tatematsu, Y., Ogasawara, S., Yamada, N., Fujii, A., Idehara, T., Manuilov, V.N., 2010, Development of high power sub terahertz gyrotrons for application to CTS measurement, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Th-E1.5.

  194. Idehara, T., Horii, F., Fujii, Y., Ogawa, I., Saito, T., Fujiwara, T., Suehara, T., Dupree, R., 2011, High power THz technologies opened by high power radiation sources – Gyrotron FU CW series, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, Invited S1, pp. 61-62.

    Google Scholar 

  195. Saito, T., Tatematsu, Y., Yamada, N., Ogasawara, S., Ikeda, R., Ogawa, I., Idehara, T., Manuilov, V.N., 2011, Development of high power gyrotrons in the sub terahertz region for application to CTS measurement, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 65-66.

  196. Tatematsu, Y., Yamaguchi, Y., Idehara, T., Ozeki, T., Ikeda, R., Kanemaki, T., Ogawa, I., Saito, T., 2012, Development of a kW level-200 GHz gyrotron FU CW GI with an internal quasi-optical mode converter. J. Infrared Milli Terahz Waves, 33, 292-305.

    Article  Google Scholar 

  197. Saito, T., Ogasawara, S., Yamada, N., Ikeuchi, S., Tatematsu, Y., Ikeda, R., Ogawa, I., Manuilov, V.N., 2012, New power records of sub-terahertz gyrotron with second-harmonic oscillation. Plasma and Fusion Research: Rapid Communications, 7, 126003-1 (3 pages).

    Google Scholar 

  198. Saito, T., Tatematsu, Y., Yamaguchi, Y., Ikeuchi, S., Ogasawara, S., Yamada, N., Ikeda, R., Ogawa, I., Idehara, T., 2012, Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation. Physical Review Letters, 109, 155001-1 (5 pp).

    Article  Google Scholar 

  199. Saito, T., Yamada, N., Ikeuti, S., Ogasawara, S., Tatematsu, Y., Ikeda, R., Ogawa, I., Idehara, T., Manuilov, V.N., Shimozuma, T., Kubo, S., Nishiura, M., Tanaka, K., Kawahata, K., 2012, Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation. Physics of Plasmas, 19, 063106 (9 pp).

    Article  Google Scholar 

  200. Idehara, T., Sabchevski, S.P., 2012, Development and applications of high-frequency gyrotrons in FIR FU covering the sub-THz to THz range. J. Infrared Milli Terahz Waves, 33, 667-694.

    Article  Google Scholar 

  201. Idehara, T., Mudiganti, J.C., Agusu, L., Kanemaki, T., Ogawa, I., Fujiwara, T., Matsuki, Y., Ueda, K., 2012, Development of a compact sub-THz gyrotron FU CW CI for application to high power THz technologies. J. Infrared Milli Terahz Waves, 33, 724-744.

    Article  Google Scholar 

  202. Saito, T., Yamada, N., Ikeuchi, S., Ogasawara, S., Yamaguchi, Y., Tatetmatsu, Y., Ikeda, R., Ogawa, I., 2012, Mode competition and cooperation in high power sub-THz gyrotrons, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Tue-A-3-4.

  203. Ikeda, R., Tatematsu, Y., Idehara, T., Yamaguchi, Y., Ogawa, I., Saito, T., 2012, Development of a table-top 200 GHz gyrotron FU CW CII with an internal mode converter, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Mon-C-3-5.

  204. Yamaguchi, Y., Saito, T., Tatematsu, Y., Ikeuchi, S., Yamada, N., Ikeda, R., Ogawa, I., Idehara, T., 2012, Development of a high-power 295 GHz fundamental-harmonic gyrotron, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Tue-A-3-5.

  205. Saito, T., Yamaguchi, Y., Ikeuchi, S., Kasa, J., Tatemetsu, Y., Ikeda, R., Ogawa, I., Idehara, T., Kubo, S., Shimozuma, T., Nishiura, M., Tanaka, K., 2013, Experimant for over 200 kW oscillation of a 295 GHz pulse gyrotron. Proc. 38th Int. Conf. on Infrared, Milli-meter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo5-3.

  206. Tatematsu, Y., Yamaguchi, Y., Idehara, T., Kawase, T., Ichioka, R., Ogawa, I., Saito, T., Fujiwara, T., 2014, Development of second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, equipped with internal mode converters. J Infrared Milli Terahz Waves, 35, No. 2, 169-178.

    Google Scholar 

  207. Tatematsu, Y., Yamaguchi, Y., Idehara, T., Kawase, T., Ogawa, I., Saito, T., Fujiwara, T., 2014, Characteristics of the mode converter of Gyrotron FU CW GII radiating Gaussian beams in both the fundamental and second harmonic frequency bands. J Infrared Milli Terahz Waves, 35, No. 6-7, 517-524.

    Google Scholar 

  208. Tatematsu, Y., Yamaguchi, Y., Kawase, T., Ichioka, R., Ogawa, I., Idehara, T., 2014, Analysis of oscillation characteristics and optimal conditions for high power operation of Gyrotron FU CW GIII. Physics of Plasmas, 21, 083113 (6 pp).

    Article  Google Scholar 

  209. Tatematsu, Y., Yamaguchi, Y., Ichioka, R., Ogawa, I., Idehara, T., Saito, T., 2014, Development of a multiple-frequency gyrotron, Gyrotron FU CW GV. 39th Int. Conf. on Infrared, Millim. and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W4_D-25.9.

  210. Saito, T., Yamaguchi, Y., Tatematsu, Y., Kasa, J., Kotera, M., Ikeuchi, S., Idehara, T., Kubo, S., Shimozuma, T., Tanaka, K., Nishiura, M., 2014, High power oscillation experiment of a prototype gyrotron for 300 GHz band collective Thomson scattering diagnostics in LHD. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W4_D-25.17.

  211. Yamaguchi, Y., Saito, T., Tatematsu, Y., Ikeuchi, S., Manuilov, V.N., Kasa, J., Kotera, M., Idehara, T., Kubo, S., Shimozuma, T., Tanaka, K., Nishiura, M., 2015, High-power pulsed gyrotron for 300 GHz-band collective Thomson scattering diagnostics in the Large Helical Device. Nucl. Fusion, 55, 013002 (10 pp).

    Article  Google Scholar 

  212. Tatematsu, Y., Yamaguchi, Y., Ichioka, R., Kotera, M., Saito, T., Idehara, T., 2015, Development of the multifrequency gyrotron FU CW GV with Gaussian beam output. J Infrared Milli Terahz Waves, 36, 697-708.

    Article  Google Scholar 

  213. Saito, T., Kasa, J., Yamaguchi, Y., Tatematsu, Y., Kotera, M., Kubo, S., Shimozuma, T., Tanaka, K., Nishiura, M., 2015, Development of a high power 300 GHz band gyrotron for practical use in collective Thomson scattering diagnostics in LHD. 40th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, H1E-2.

    Google Scholar 

  214. Saito, T., Yamaguchi, Y., Tatematsu, Y., Hirobe, T., Fukunari, M., Kasa, J., Kubo, S., Shimozuma, T., Tanaka, K., Nishiura, M., 2016, High power oscillation of 300 GHz band gyrotron for practical use in Collective Thomson Scattering in LHD. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, H4B.1.

  215. Saito, T., Yamaguchi, Y., Fukunari, M., Tatemetsu, Y., Hirobe, T., Shinbayashi, R., Tanaka, S., Kubo, S., Shimozuma, T., Tanaka, K., Nishiura, M., 2017, Design consideration and oscillation characteristics of high-power 300 GHz gyrotron. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, RA2.1.

  216. Idehara, T., I. Ogawa, I., Wagner, D., Thumm, M., Kosuga, K., Sabchevski, S.P., 2018, High purity mode CW gyrotron covering the subterahertz to terahertz range using a 20 T superconducting magnet. IEEE Trans. on Electron Devices, 65, No. 8, 3486-3491.

  217. Idehara, T., Sabchevski, S.P., 2018, Development and application of gyrotrons at FIR UF. IEEE Trans. on Plasma Science, 46, No. 7, 2452-2459.

    Google Scholar 

  218. Tatematsu, Y., 2018, Recent progress in development and application of sub-THz gyrotrons in University of Fukui. EPJ Web of Conferences, 195, 01018 (2 pp).

    Article  Google Scholar 

  219. Tatemetsu, Y., Takayama, K., Maeda, Y., Ueyama, T., Ogura, T., Fukunari, M., Yamaguchi, Y., Saito, T., 2018, Development of a second harmonic multi-frequency gyrotron with Gaussian beam output. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, Tu-P2-R1-5.

  220. Bajaj, V.S., Farrar, C.T., Hornstein, M.K., Mastovsky, I., Vieregg, J., Bryant, J., Eléna, B., Kreischer, K.E., Temkin, R.J., Griffin, R.G., 2003, Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source. J. of Magnetic Resonance, 160, 85-90.

    Article  Google Scholar 

  221. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Kreischer, K.E., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2004, Harmonic results of a 460 GHz gyrotron. 5th IEEE Int. Vacuum Electronics Conf. (IVEC 2004), Monterey, CA, USA, 26-27.

  222. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Kreischer, K.E., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Woskov, P.P., 2004, CW results of a 460 GHz second harmonic gyrotron oscillator – for sensitivity enhanced NMR –. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 147-148.

    Google Scholar 

  223. Hornstein, M.K., Bajaj, V.S., Kreischer, K.E., Griffin, R.G., Temkin, R.J., 2005, CW second harmonic results at 460 GHz of a gyrotron oscillator – for sensitivity enhanced NMR –. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 437-438.

    Google Scholar 

  224. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Kreischer, K.E., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin,R.J., 2005, Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator. IEEE Trans. on Electron Devices, 52, 798-807.

  225. Han, S.T., Joye, C.D., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Woskov, P.P., 2006, Stable operation of a 0.46 THz continuous wave gyrotron oscillator. Proc. Int. Vacuum Electronics Conference and Int. Vacuum Electron Sources (IVEC/IVESC 2006), Monterey, California, USA, 539-540.

  226. Joye, C.D., Griffin, R.G., Hornstein, M.K., Hu, K.N., Kreischer, K.E., Rosay, M., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Woskov, P.P., 2006, Operational characteristics of a 14-W 140-GHz gyrotron for dynamic nuclear polarization. IEEE Trans. on Plasma Science, 34, 518-523.

    Article  Google Scholar 

  227. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Temkin, R.J., 2006, Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator. IEEE Trans. on Plasma Science, 34, 524-533.

    Article  Google Scholar 

  228. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Temkin, R.J., 2007, Efficient low-voltage operation of a CW gyrotron oscillator at 233 GHz. IEEE Trans. on Plasma Science, 35, 27-30.

    Article  Google Scholar 

  229. Han, S.T., Griffin, R.G., Hu, K.N., Joo, C.-G., Joye, C.D., Sirigiri, J.R., Temkin, R.J., Torrezan, A.C., Woskov, P.O., 2007, Spectral characteristics of a 140 GHz long-pulsed gyrotron, IEEE Trans. on Plasma Science, 35, 559-564.

    Article  Google Scholar 

  230. Bajaj, V.S., Hornstein, M.K., Kreischer, K.E., Sirigiri, J.R., Woskov, P.O., Mark-Jurkauskas, M.L., Herzfeld, J., Temkin, R.J., Griffin, R.G., 2007, 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR, J. of Magnetic Resonance, 189, 251-279.

    Article  Google Scholar 

  231. Torrezan, A.C., Han, S.T., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2008, CW operation of a tunable 330/460 GHz gyrotron for enhanced nuclear magnetic resonance, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, T5D33.1271.

  232. Torrezan, A.C., Han, S.-T., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Barnes, A.B., Griffin, R.G., 2010, Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance, IEEE Trans. on Plasma Science, 38, 1150-1159.

    Article  Google Scholar 

  233. Torrezan, A.C., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2010, Operation of a tunable second-haramonic 330 GHz CW gyrotron, Proc. 11th IEEE Int. Vacuum Electronics Conference (IVEC 2010), Monterey, USA, pp. 199-200.

  234. Griffin, R.G., 2011, Dynamic nuclear polarization at 9 T using a novel 250 gyrotron microwave source. Journal of Magnetic Resonance, 213, 410-412.

    Article  Google Scholar 

  235. Temkin, R., Barnes, A., Griffin, R., Jawla, S., Mastovsky, I., Nanni, E., Shapiro, M., Torrezan, A., Woskov, P., 2011, Recent progress at MIT on THz gyrotron oscillators for DNP/NMR, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), Houston, TX, USA, W3A.1.

  236. Barnes, A.B., Markhasin, E., Daviso, E., Michaelis, V.K., Nanni, E.A., Jawla, S.K., Mena, E.L., DeRocher, R., Thakkar, A., Woskov, P.P., Herzfeld., J., Temkin R.J., Griffin, R.G., 2012, Dynamic nuclear polarization at 700 MHz/460 GHz. J. of Magnetic Res., 224, 1-7.

  237. Barnes, A.B., Nanni, E.A., Herzfeld, J., Griffin, R.G., Temkin, R.J., 2012, A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization. J. of Magnetic Resonance, 221, 147-153.

    Article  Google Scholar 

  238. Barnes, A.B., Nanni, E.A., Jawla, S., Ni, Q.Z., Herzfeld, J., Griffin, R.G., Temkin, R.J., 2012, A novel high power 3 GHz tunable 250 GHz gyrotron for dynamic nuclear polarization, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, pp. 329-330.

  239. Jawla, S., Ni, Q.Z., Barnes, A., Guss, W., Daviso, E., Herzfeld, J., Griffin, R., Temkin, R., 2013, Continuously tunable 250 GHz gyrotron with a double disk window for DNP-NMR spectroscopy. J. Infrared Milli Terahz Waves, 34, 42-52.

    Article  Google Scholar 

  240. Temkin, R., 2014, THz gyrotrons and their applications. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, P-25.1.

  241. Jawla, S.K., Guss, W.C., Shapiro, M.A., Temkin, R.J., 2014, Design and experimental results from a 527 GHz gyrotron for DNP-NMR spectroscopy. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W4_D-25.12.

  242. Jawla, S., Resse, M., George, C., Yang, C., Shapiro, M.m Griffin, R., Temkin, R., 2016, 330 GHz / 500-MHz dynamic nuclear polarization – NMR spectrometer. 17th IEEE International Vacuum Electronics Conference (IVEC 2016), April 19-21, 2016, Monterey, CA, USA, Invited Keynote, P4.10.

  243. Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Felch, K., Rosay, M., Tometich, L., 2009, Demonstration of a 263 GHz gyrotron for dynamic nuclear polarization, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, W3D02.0122.

  244. Rosay, M., Tometich, L., Pawsey, S., Bader, R., Schauwecker, R., Blank, M., Borchard, P.M., Cauffman, S.R., Felch, K.L., Weber, R.T., Temkin, R.J., Griffin, R.G., Maas, W.E., 2010, Solid-state dynamic nuclear polarization at 263 GHz: Spectrometer design and experimental results, Phys. Chem. Chem. Phys., 12, 5850-5860.

    Article  Google Scholar 

  245. Blank, M., Borchard, P., Cauffman, S., Felch, K., Rosay, M., Tometich, L., 2012, High-frequency CW gyrotrons for NMR/DNP applications, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, pp. 327-328.

  246. Booske, J.H., Dobbs, R.J., Joye, C.D., Kory, C.L., Neil, G.R., Park, G.S., Park, J., Temkin, R.J., 2011, Vacuum electronic high power terahertz sources, IEEE Trans. on Terahertz Science and Technology, 1, 54-75.

    Article  Google Scholar 

  247. Nusinovich, G., 2011, Terahertz gyrotrons, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), Houston, TX, USA, W1.1.

  248. Felch, K., Blanck, M., Borchard, P., Cauffman, S., Rosay, M., Tometich, L., 2013, First tests of a 527 GHz gyrotron for dynamic nuclear polarization. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 1B-1.

  249. Blank, M., High-frequency gyrotrons for DNP-enhanced NMR applications. 2014, Proc. 15th IEEE Int. Vacuum Electronics Conference (IVEC 2014), Monterey, CA, USA, PL4. Blank, M., Borchard, P., Cauffman, S., Felch, K., Rosay, M., Tometich, L., 2014, Development of high-frequency gyrotrons for DNP/NMR applications. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 13-14.

  250. Rosay, M., Blank, M., Engelke, F., 2016, Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR. J. of Magnetic Resonance, 262, 88-98.

    Article  Google Scholar 

  251. Blank, M., 2018, Demonstration of a 593 GHz gyrotron for DNP. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, We-A2-4-2.

  252. Scott, F.J., Saliba, E.P., Albert, B.J., Alaniva, N., Sesti, E.L., Gao, C., Golota, N.C., Choi, E.J., Jagtap, A.P., Wittmann, J.J., Eckardt, M., Harneit, W.H., Corzilius, B., Sigurdsson, S.T., Barnes, A.B., 2018, Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization. Journal of Magnetic Resonance, 289, 45-54.

    Article  Google Scholar 

  253. Idehara, T., Ogawa, I., Agusu, La., Kanemaki, T., Mitsudo, S., Saito, T., Fujiwara, T., Takahashi, H., 2007, Development of 394.6 GHz CW gyrotron (gyrotron FU CW II) for DNP/Proton-NMR at 600 MHz. Int. J. Infrared and Millimeter Waves, 28, 433-442.

    Article  Google Scholar 

  254. Agusu, La, Idehara, T., Ogawa, I., Saito, T., Kanemaki, T., Takahashi, H., Fujiwara, T., 2007, Detailed consideration of experimental results of gyrotron FU CW II developed as a radiation source for DNP-NMR spectroscopy. Int. J. Infrared and Millimeter Waves, 28, 499-511.

    Article  Google Scholar 

  255. Idehara, T. Saito, T., Ogawa, I., Mitsudo, S., Tatematsu, Y., La Agusu, Mori, H., Kobayashi, S., 2008, Development of terahertz FU CW gyrotron series for DNP, Appl. Magn. Resonance, 34, 265-275.

    Article  Google Scholar 

  256. Idehara, T., Agusu, L., Ogawa, I., Kobayashi, S., Saito, T., Dupree, R., Smith, M.E., 2008, Development of gyrotron FU CW IIA for 600 MHz and 300 MHz DNP-NMR experiments at the University of Warwick, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, T5D23.1185.

  257. Kosuga, K., Idehara, T., Ogawa, I., Saito, T., Agusu, L., Kanemaki, T., Smith, M.E., Dupree, R., 2009, Development of Gyrotron FU CW VII for 600 and 300 MHz DNP-NMR, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, M5E55.0235.

  258. Ogawa, I., Idehara, T., Kobayashi, S., Changb, T.H., Horii, F., Saito, T., 2009, Development of continuously frequency tunable gyrotron and its application to 200 MHz DNP-NMR spectroscopy as a radiation source, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, W3D03.0309.

  259. Idehara, T., Kosuga, K., Agusu, La, Ikeda, R., Ogawa, I., Saito, T., Matsuki, Y., Ueda, K., Fujiwara, T., 2010, Continuously frequency tunable high power sub-THz radiation source – gyrotron FU CW VI for 600 MHz DNP-NMR spectroscopy, J. Infrared Milli Terahz Waves, 31, 775-790.

    Article  Google Scholar 

  260. Idehara, T., Kosuga, K., La Agusu, Ogawa, I., Dupree, R., Takahashi, H., Mark, M.E., 2010, Gyrotrons FU FU CW VII for 600 MHz and 300 MHz DNP-NMR spectroscopy, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, We-P13.

  261. Mitsudo, S., Nakagawa, N., Ohashi, Y., Katayama, T., Tatematsu, Y., Ogawa, I., Idehara, T., Saito, T., 2010, Development of a sub-THz CW gyrotron for the millimeter wave pulsed ESR spectrometer, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Th-P.53.

  262. Idehara, T., Saito, T., Ogawa, I., Mitsudo, S., Tatematsu, Y., Ikeda, R., Mudiganti, J., Kosuga, K., 2010, THz gyrotron FU CW series for high power THz technologies, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Th-E1.1.

  263. Ikeda, R., Idehara, T., Ogawa, I., Kosuga, K., Saito, T., Matsuki, Y., Ueda, K., Fujiwara, T., Chang, T.H., 2010, Development of continuously frequency tunable gyrotrons FU, CW VI and FU CW VI A for application to 600 MHz DNP-NMR spectroscopy, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Th-E1.3.

  264. Matsuki, Y., Takahashi, H., Ueda, K., Idehara, T., Ogawa, I., Toda, M., Akutsu, H., Fujiwara, T., 2010, Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR, Phys. Chem. Chem. Phys., 12, 5799-5803.

    Article  Google Scholar 

  265. Matsuki, Y., Ueda, K., Idehara, T., Ikeda, R., Ogawa, I., Nakamura, S., Toda, M., Anai, T., Fujiwara, T., 2012, Helium-cooling and –spinning dynamic nuclear polarization for sensitivity-enhanced solid-state NMR at 14 T and 30 K. J. of Magnetic Resonance, 225, 1-9.

    Article  Google Scholar 

  266. Matsuki, Y., Ueda, K., Idehara, T., Ikeda, R., Kosuga, K., Ogawa, I., Nakamura, S., Toda, M., Anai, T., Fujiwara, T., 2012, Application of continuously frequency-tunable 0.4 THz gyrotron to dynamic nuclear polarization for 600 MHz solid-state NMR. J. Infrared Milli Terahz Waves, 33, 745-755.

    Article  Google Scholar 

  267. Ikeda, R., Idehara, T., Ogawa, I., Tatematsu, Y., Chang, T.H., Chen, N.C., Matsuki, Y., Ueda, K., Fujiwara, T., 2012, Development of a continuously frequency tunable gyrotron operating at the fundamental resonance for 600 MHz DNP-NMR spectroscopy, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Tue-Pos-29.

  268. Idehara, T., Tatematsu, Y., Yamaguchi, Y., Ikeda, R., Ogawa, I., Saito, T., Matsuki, Y., Ueda, K., Fujiwara, T., Toda, M., 2013, 460 GHz second harmonic gyrotrons for a 700 MHz DNP-NMR spectroscopy. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo1-4.

  269. Yamaguchi, Y., Tatematsu, Y., Saito, T., Kuwahara, T., Ikeda, R., Ogawa, I., Idehara, T., Dumbrajs, O., 2013, Experimental verification of a self-consistent calculation for continuous frequency-tune with a 400 GHz band second harmonic gyro-BWO. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo P1-53.

  270. Tatematsu, Y., Kawase, T., Ichioka, R., Yamaguchi, Y., 2013, Power improvement on gyrotron FU CW GIII. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Tu1-5.

  271. Ikeda, R., Idehara, T., Tatematsu, Y., Ogawa, I., Yamaguchi, Y., Kanemaki, T., Saito, T., 2013, Development of broadband frequency tunable gyrotron operating at the fundamental resonance for 600 MHz DNP-NMR spectroscopy. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, We P2-80.

  272. Idehara, T., Tatematsu, Y., Yamaguchi, Y., Khutoryan, E., Kuleshov, A., Ueda, K., Matsuki, Y., Fujiwara, T., 2014, Sub-THz gyrotrons with special functions of frequency control for applications to DNP-NMR spectroscopy. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W4_D-25.15.

  273. Idehara, T., Tatematsu, Y., Yamaguchi, Y., Khutoryan, E.M., Luleshov, A.N., Ueda, K., Matsuki, Y., Fujiwara, T., 2015, The development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy. J Infrared Milli Terahz Waves, 36, 613-627.

    Article  Google Scholar 

  274. Idehara, T., Khutoryan, E.M., Tatematsu, Y., Yamaguchi, Y., Kuleshov, A.N., Dumbrajs, O., Matsuki, Y., Fujiwara, T., 2015, High speed frequency modulation of a 460 GHz gyrotron for application to the 700 MHz DNP enhanced NMR spectroscopy. 40th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, W2E-3.

    Google Scholar 

  275. Ueda, K., Matsuki, Y., Fujiwara, T., Tatematsu, Y., Ogawa, I., Idehara, T., 2016, Further characterization of 394-GHz Gyrotron FU CW GII with additional PID control system for 600-MHz DNP-SSNMR spectroscopy. J Infrared Milli Terahz Waves, 37, 825-836.

    Article  Google Scholar 

  276. Matsuki, Y., Idehara, T., Fukazawa, J., Fujiwara T., 2016, Advaned instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures. J. of Magnetic Resonance, 262, 107-115.

    Article  Google Scholar 

  277. Dumbrajs, O., Khutoryan, E.M., Idehara, T., 2016, Hysteresis and Frequency Tunability of Gyrotrons. J Infrared Milli Terahz Waves, 37, No. 6, 531-560.

    Google Scholar 

  278. Tatematsu, Y., Yamaguchi, Y., Kotera, M., Saito, T., 2016, Frequency tunability in both 200 and 400 GHz bands realized in Gyrotrons FU CW GIV and FUCW X. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, HSP.21.13.

  279. Idehara, T., Glyavin, M., Kuleshov, A., Sabchevski, S., Manuilov, V., Zaslavsky, V., Zotova, I., Sedov, A., 2017, A novel THz-band double-beam gyrotron for high-field DNP-NMR spectroscopy. Review of Scientific Instruments, 88, No.9, 094708 (5 pp.).

  280. Idehara, T., Glyavin, M., Kuleshov, A., Sabchevski, S., Manuilov, V., Zaslavsky, V., Zotova, I., Sedov, A., 2017, Experimental study of a THz double-beam gyrotron. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, RB2.2.

  281. Urushizaki, Y., Idehara, T., Ogawa, I., Ikeda, R., Sabchevski, S., Asai, S., Suehara, T., Miyazaki, A., Yamazaki, T., Kobayashi, T., 2010, Gyrotrons FU CW V and FU CW VIII for measurement of hyperfine structure of positronium, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Mo-P.31.

  282. Dumbrajs, O., Idehara, T., 2010, Frequency tunable gyrotron FU CW VA for measuring hyperfine split of positronium, J. Infrared Milli Terahz Waves, 31, 1265-1270.

    Article  Google Scholar 

  283. Yamazaki, T., Miyazaki, A., Suehara, T., Namba, T., Asai, S., Kobayashi, T., Saito, H., Ogawa, I., Idehara, T., Sabchevski, S., 2012, Direct observation of the hyperfine transition of ground-state positronium. Physical Review Letters, 108, 253401, 5 (pp).

  284. Asai, S., Yamazaki, T., Miyazaki, A., Suehara, T., Namba, T., Kobayashi, T., Saito, H., Idehara, T., Ogawa, I., Sabchevski, S., 2012, Direct measurement of positronium hyperfine structure: A new horizon of precision spectroscopy using gyrotrons. J. Infrared Milli Terahz Waves, 33, 766-776.

    Article  Google Scholar 

  285. Miyazaki, A., Yamazaki, T,·Suehara, T., Namba, T., Asai, S.,·Kobayashi, T.,·Saito, H., Idehara, T., Ogawa, I., Tatematsu, Y., 2014, The direct spectroscopy of Positronium hyperfine structure using a sub-THz gyrotron. J Infrared Milli Terahz Waves, 35, No. 1, 91-100.

    Google Scholar 

  286. Miyazaki, A., Yamazaki, T., Suehara, T., Namba, T., Asai, S., Kobayashi, T., Saito, H., Tatematsu, Y., Ogawa, I., Idehara, T., 2015, First millimeter-wave spectroscopy of ground-state positronium. Prog. Theor. Exp. Phys, 2015, 011C01 (10 pp).

  287. Rogalev, A., Goulon, J., Goujon, G., Wilhelm, F., Ogawa, I., Idehara, T., 2012, X-ray detected magnetic resonance at sub-THz frequencies using a high power gyrotron source. J. Infrared Milli Terahz Waves, 33, 777-793.

    Article  Google Scholar 

  288. Glyavin, M., Idehara, T., Khizhnyak, V., Luchinin, A., Manuilov, V., Agusu, L., Ogawa, I., Saito, T., Takahashi, H., Fujiwara, T., 2008, Design of gyrotron FU CW VI for 600 MHz DNP-NMR experiment, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, T5D28.1432.

  289. Zapevalov, V.E., Dubrov, V.V., Fix, A.Sh., Kopelovich, E.A., Kuftin, A.N., Malygin, O.V., Manuilov, V.N., Moiseev, M.A., Sedov, A.S., Venediktov, N.P., Zavolsky, N.A., 2009, Development of 260 GHz second harmonic CW gyrotron with high stability of output parameters for DNP spectroscopy, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, W3D04.0389.

  290. Glyavin, M.Yu., Luchinin, A.G., Rodin, Yu.V., 2010, Generation of 5 kW/l THz coherent radiation from pulsed magnetic field gyrotron, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, We-E1.1.

  291. Zapevalov, V.E., Fix, A.Sh., Kopelovich, E.A., Kornishin, S.Yu., Kotov, A.V., Kuftin, A.N., Malygin, O.V., Manuilov, V.N., Moiseev, M.A., Sedov, A.S., Tsalolikhin, V.I., Zavolsky, N.A., 2010, Elaboration of 260 GHz second harmonic CW gyrotron with high stability of output parameters for DNP spectroscopy, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, We-E1.4.

  292. Glyavin, M.Yu., Chirkov, A.V., Denisov, G.G., Fokin, A.P., Kholoptsev, V.V., Kuftin, A.N., Luchinin, A.G., Golubyatnikov, G.Yu., Malygin, V.I., Morozkin, M.V., Manuilov, V.N., Proyavin, M.D., Sedov, A.S., Sokolov, E.V., Tai, E.M., Tsvetkov, A.I., Zapevalov, V.E., 2015, Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media. Rev. Scientific Instr., 86, 054705 (3 pp).

    Article  Google Scholar 

  293. Fokin, A.P., Denisov, G.G., Glyavin, M.Yu., Golubiatnikov, G.Yu., Lubyako, L.V., Morozkin, M.V., Movschevich, B.Z., Tsvetkov, A.I., 2017, High precision frequency stabilization of a 100 W/263 GHz continuous wave gyrotron. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, GII-4.

  294. Denisov, G.G., Fokin, A.P., Glyavin, M.Yu., Golubiatnikov, G.Yu., Lubyako, L.V., Morozkin, M.V., Movschevich, B.Z., Tsvetkov, A.I., 2017, High precision frequency stabilization of a 263 GHz continuous wave gyrotron. EPJ Web of Conferences, 149, 04022 (2 pp).

    Article  Google Scholar 

  295. Bratman, V.L., Fedotov, A.E., Fokin, A.P., Glyavin, M.Yu., Manuilov, V.N., Osharin,I.V., 2017, Operation of a sub-terahertz CW gyrotron with an extremely low voltage. Physics of Plasmas, 24, 113105 (5 pp).

  296. Glyavin, M.Y., Denisov, G.G., Zapevalov, V.E., Koshelev, M.A., Tretyakov, M.Y., Tsvetkov, A.I., 2016, High-power terahertz sources for spectroscopy and material diagnostics. Physics –Uspekhi, 59, No. 6, 595-604.

    Google Scholar 

  297. Koshelev, M.A., Tsvetkov, A.I., Morozkin, M.V., Glyavin, M.Yu., Tretyakov, M.Yu., 2017, Molecular gas spectroscopy using radioacoustc detection and high-power coherent subterahertz radiation sources. J. Molecular Spectroscopy, 331, 9-16.

    Article  Google Scholar 

  298. Golubiatnikov, G.Yu., Koshelev, M.A., Tsvetkov, A.I., Fokin, A.P., Glyavin, M.Yu., Tretyakov, M.Yu., 2018, Recent results on THz gyrotron-based molecular spectroscopy. EPJ Web of Conferences, 195, 06017 (2 pp).

    Article  Google Scholar 

  299. Denysenkov, V., Prandolini, M.J., Gafurov, M., Sezer, D., Endeward, B., Prisner, T.F., 2010, Liquid state DNP using a 260 GHz high power gyrotron, Phys. Chem. Chem. Phys., 12, 5786-5790.

    Article  Google Scholar 

  300. Gafurov, M., Denysenkov, V., Prandolini, M.J., Prisner, T.F., 2012, Temperature dependence of the proton Overhauser DNP enhancements on aqueous solutions of Fremy’s salt measured in a magneticfield of 9.2 T. Applied Magnetic Resonance, 43, 119-128.

    Article  Google Scholar 

  301. Alberti, S., Ansermet, J.Ph., Braunmüller, F., Cuanillon, P., Dubray, J., Fasel, D., Hogge, J.Ph., Macor, A., de Rijk, E., Tran, M.Q., Tran, T.M., Vuillemin, Q., 2012, Experimental results on a modular gyrotron operating at 0.26 THz for 400 MHz DNP/NMR spectroscopy applications, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Thu-A-2-3.

  302. Alberti, S., Braunmueller, F., Tran, T.M., Genoud, J., Hogge, J.-P., Tran, M.Q., 2013, Nanosecond pulses in a THz gyrotron oscillator operating in a mode-locked self-consistent Q-switch regime. Physical Review Letters, 111, No. 20, 205101 (5 pp).

    Article  Google Scholar 

  303. Rozier, Y., Legrand, F., Lievin, C., Racamier, J.-R., Marchesin, R.,Alberti, S., Braunmueller, F., Hogge, J.-P., da Silva, M., Tran, T.M., Tran, M.Q., Macor, A., 2013, Manufacturing of a 263 GHz continuously tunable gyrotron. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 1B-3.

  304. Hogge, J.-P., Braunmueller, F., Alberti, S., Genoud, J., Tran, T.M., Vuillemin, Q., Tran, M.Q., Ansermet, J.-P., Cuanillon, P., Macor, A., de Rijk, E., Saraiva, P., 2013, Detailed characterization of a frequency-tunable 260 GHz gyrotron oscillator planned for DNP/NMR spectroscopy. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo P1-16.

  305. Alberti, S., Braunmueller, F., Tran, T.M., Genoud, J., Vuillemin, Q., Hogge, J.-P., Tran, M.Q., Ansermet, J.-P., Macor, A., de Rijk, E., 2013, New results on the physics of THz gyrotrons. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Tu1-1.

  306. Glyavin, M.Yu., Luchinin, A.G., Nusinovich, G.S., Rodgers, J., Kashyn, D.G., Romero-Talamas, C.A., Pu, R., 2012, A 670 GHz gyrotron with record power and efficiency. Applied Physics Letters, 101, 153503 (4 pages).

    Article  Google Scholar 

  307. Glyavin, M., Luchinin, A., Morozkin, M., Bogdashov, A., Rodin, Yu., Denisov, G., Rodgers, J., Romero-Talamas, C., Kashyn, D., Pu, R., Nusinovich, G., Shkvarunets, A., Granatsein, V., 2012, Experimental investigation of powerful 0.67 THz gyrotron with a pulsed solenoid for remote detection of concealed radioactive materials. 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Mon-A-3-4.

  308. Nusinovich, G.S., 2016, Remote detection of concealed radioactive materials by using focused powerful terahertz radiation. J. Infr. Milli Terahz Waves, 37, No. 6, 515-535.

    Google Scholar 

  309. Kim, D., Yu, D., Sawant, A., Choe, M.S., Choi, E.M., 2017, First experimental observation of breakdown for detection of radioactive material using a gyrotron in real-time. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, MT-6.

  310. Tsvetkov, A.I., Fokin, A.P., Sedov, A.S., Glyavin, M.Yu., 2018, Using a gyrotron as a source of modulated radiation for data transmission systems in the terahertz range. EPJ Web of Conferences, 195, 09006 (2 pp).

    Article  Google Scholar 

  311. Tatsukawa, T., Doi, A., Teranaka, M., Takashima, H., Goda, F., Watanabe, S., Idehara, T., Mitsudo, S., Kanemaki, T., Namba, T., 2005, Millimeter wave irradiation and invasion into living bodies using a gyrotron as a radiation source. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 2, 727-731.

    Google Scholar 

  312. Miyoshi, N., Ito, S., Ogawa, I., Idehara, T., 2010, Combination treatment of hyperthermia and photodynamic for experimental tumor model using gyrotron (107, 203 GHz), Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Th-P.11.

  313. Sabchevski, S.P., Idehara, T., Ishiyama, S., Miyoshi, N., Tatsukawa, T., 2013, A dual-beam irradiation facility for a novel hybrid cancer therapy. J. Infr. Milli Terahz Waves, 34, 71-87.

    Article  Google Scholar 

  314. Glyavin, M.Yu., Idehara, T., Sabchevski, S.P., 2015, Development of THz gyrotrons at IAP RAS and FIR UF and their applications in physical research and high power THz technologies. IEEE Trans. on Terahertz Science and Technology, 5, No. 5, 788-797.

    Google Scholar 

  315. Idehara, T., Sabchevski, S.P., 2017, Gyrotrons for high-power terahertz science and technology at FIR UF. J Infrared Milli Terahz Waves, 38, 62-86.

    Article  Google Scholar 

  316. Idehara, T., 2016, Development and applications of high power THz radiation sources – gyrotrons. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 26-30, 2016, Copenhagen, Denmark, H1.1.

  317. Bykov, Y., Goldenberg, A.F.L., Flyagin, V.A., 1991, The possibilities of material processing by intense millimeter-wave radiation. Mat. Res. Soc. Symp. Proc., 169, 41-42.

    Google Scholar 

  318. Sklyarevich, V., Detkov, A., Shevelev, M., Decker, R., 1992, Interaction between gyrotron radiation and powder materials. Mat. Res. Soc. Symp. Proc., 269, 163-169.

    Article  Google Scholar 

  319. Link, G., Feher, L., Rhee, S., Thumm, M., Bauer, W., Ritzhaupt-Kleissl, H.-H., Weddigen, A., Böhme, R., Weisenburger, A., 1998, Sintering of ceramics using gyrotron radiation. Proc. 8th ITG-Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 150, 375-380.

    Google Scholar 

  320. Link, G., Feher, L., Thumm, M., Ritzhaupt-Kleissl, H.-J., Böhme, R., Weisenburger, A., 1999, Sintering of advanced ceramics using a 30 GHz, 10 kW, CW industrial gyrotron. IEEE Trans. on Plasma Science, 27, 547-554.

    Article  Google Scholar 

  321. Link, G., Weisenburger, A., Thumm, M., 2004, Millimeter-wave technology for powder processing. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 311-315.

    Google Scholar 

  322. Mitsudo, S., Sakai, K., Idehara, T., Saji, T., Saito, T., Sano, S., 2007, Millimeter and submillimeter wave sintering of ceramics. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 267-268.

    Google Scholar 

  323. Mitsudo, S., Hoshizuki, H., Idehara, T., Saito, T., 2006, Development of material processing system by using a 300 GHz CW gyrotron. Journal of Physics. Conf. Series, 51, 549-552.

  324. Denisov, G., Bykov, Yu., Eremeev, A., Glyavin, M., Kholoptsev, V., Kalynova, G., Luchinin, A., Morozkin, M., Plotnikov, I., Sobolev, D., 2007, High efficient gyrotron-based systems for materials processing, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 433-434.

  325. Vikharev, A.L., Gorbachev, A.M., Kozlov, A.V., Koldanov, V.A., Litvak, A.G., Ovechkin, N.M., Bykov, Yu.V., Denisov, G.G., Parshin, V.V., Radishev, D.B., 2005, Development of MPACVD technology for high-rate diamond production. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 2, 613-625.

    Google Scholar 

  326. Vikharev, A.L., Gorbachev, A.M., Kozlov, A.V., Koldanov, V.A., Litvak, A.G., Ovechkin, N.M., Radishev, D.B., Bykov, Yu.V., Chaplan, M., 2006, Diamond films grown by millimeter wave plasma-assisted CVD reactor, Diamond and Related Materials, 15, 502-507.

    Article  Google Scholar 

  327. Sadykov, V., Usoltsev, V., Eremeev, N., Mezentseva, N., Pelipenko, V., Krieger, T., Belyaev, V., Sadovskaya, E., Muzykantov, V,. Fedorova, Yu., Ishchenko, A., Salanov, A., Okhlupin, Yu., Uvarov, N., Smorygo, O., Arzhannikov, A., Korobeinikov, M., Thumm, Ma KA, 2013, Functional nanoceramics for intermediate temperature solid oxide fuel cells and oxygen separation membranes. Journal of the European Ceramic Society, 33, Issue 12, 2241–2250.

    Google Scholar 

  328. Sennikov, P.G., Vodopyanov, A.V., Golubev, S.V., Mansfeld, D.A., Drozdov, M.N., Drozdov, Yu.N., Andreev, B.A., Gavrilenko, L.V., Pryakhin, D.A., Shashkin, V.I., Godisov, O.N., Glasunov, A.I., Safonov, A.Ju., Pohl, H.-J., Thewalt, M.L.W., Becker, P., Riemann, H., Abrosimov, N.V., Valkiers, S., 2012, Towards 0.99999 28Si, Solid State Communications, 152, 455-457.

    Article  Google Scholar 

  329. Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., 2016, On the mechanism of microwave flash sintering of ceramics. Materials, 9, 684 (18 pp).

    Article  Google Scholar 

  330. Egorov, S.V., Bykov, Y.V., Eremeev, A.G., Sorokin, A.A., Serov, E.A., Parshin, V.V., Balabanov, S.S., Belyaev, A.V., Novikova, A.V., Permin, D.A., 2017, Millimeter-wavelength radiation used to sinter radiotransparent MgAl2O4 ceramics. Radiophysics and Quantum Electronics, 59, No. 8-9, 690-697.

    Google Scholar 

  331. Mahmoud, M., Link, G., Jelonnek, J., Thumm, M., 2017, Investigation on mm-wave sintering of metal powder compacts using in-situ dilatometry and electrical resistivity measurements. EPJ Web of Conferences, 149, 02007 (2 pp).

    Article  Google Scholar 

  332. Denisov, G.G., Bykov, Y.V., Glyavin, M.Yu., Luchinin, A.G., Morozkin, M.M., Sobolev, D.I., 2008, High efficient gyrotron-based systems for technological applications, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, R4A2.1512.

  333. Denisov, G.G., Bykov, Yu.V., Eremeev, A.G., Glyavin, M.Yu., Luchinin, A.G., Morozhin, M.M., Samsonov, S.V., 2009, Prospective gyro-devices for technological applications, Proc. 10th IEEE Int. Vacuum Electronics Conf. (IVEC 2009), Rome, Italy, pp. 513-514.

  334. Bykov, Y.V., Denisov, G.G., Eremeev, A.G., Flat, F.A., Glyavin, M.Yu., Gorbachev, A.M., Kalynova, G.I., Kholoptsev, V.V., Kopelovich, E.A., Luchinin, A.G., Plotnikov, I.V., Morozkin, M.V., Samsonov, S.V., Vikharev, A.L., 2009, Efficiency enhancement of gyrotron based setups for materials processing, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, R3D03.0058.

  335. Soluyanova, E.A., Bykov, Yu.V., Chirkov, A.V., Denisov, G.G., Kopelovich, E.A., Orlov, V.B., Pavelyev, A.B., Sokolov, E.V., Tai, E.M., 2011, Gyrotron complexes for technological applications, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, p. 133.

  336. Vodopyanov, A.V., Samokhin, A.V., Alexeev, N.V., Sinayskiy, M.A., Tsvetkov, A.I., Glyavin, M. Yu, Fokin, A.P., Malygin, V.I., 2017, Application of the 263 GHz/1 kW gyrotron setup to produce a metal oxide nanopowder by the evaporartion-condensation technique, Vacuum, 145, 340-346.

    Article  Google Scholar 

  337. Woskov, P.P., Einstein, H.H., Oglesby, K.D., 2014, Penetrating rock with intense millimeter-waves. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, F2_B-36.3.

  338. Kikunaga, T., Asano, H., Yasojima, Y., Sato, F., Tsukamoto, T., 1995, A 28 GHz gyrotron with a permanent magnet system. Int. J. Electronics, 79, 655-663.

    Article  Google Scholar 

  339. Bykov, Yu., Glyavin, M., Goldenberg, A., Flyagin, V., Lygin, V., Manuilov, V., Moiseev, M., Zavolsky, N., 1999, Development and experimental investigation of high power technological gyrotrons. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TU-A7.

  340. Kuftin, A.N., Flyagin, V.A., Lygin, V.K., Luchinin, A.G., Malygin, O.V., Zapevalov, V.E., Zavolsky, N.A., 1999, 5.8-62 GHz CW gyrotrons with warm and permanent magnets for technological application. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2000, Vol. 2, 671- 676.

    Google Scholar 

  341. Kuftin, A.N., Flyagin, V.A., Lygin, V.K., Malygin, O.V., Zapevalov, V.E., Zavolsky, N.A., 1999, Technological gyrotrons with permanent magnet system. Proc. Int. University Conf. “Electronics and Radiophysics of Ultra-High Frequencies” (UHF-99), 1999, St. Petersburg, Russia, 126-129.

  342. Kuftin, A.N., Flyagin, V.A., Lygin, V.K., Malygin, O.V., Zapevalov, V.E., Zavolsky, N.A., 2000, Technological gyrotrons with permanent magnet system. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 267-268.

  343. Bykov, Yu., Denisov, G., Eremeev, A., Kalynova, G., Kholoptsev, V., Kopelovich, E., Kuftin, A., Lygin, V., Pavelyev, A., Plotnikov, I., Zapevalov, V., Zavolsky, N., 2004, Microwave source based on the 24 GHz 3 kW gyrotron with permanent magnet. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 191-192.

    Google Scholar 

  344. Denisov, G., Bykov, Yu., Eremeev, A., Kholoptsev, V., Glyavin, M., Luchinin, A., Kalynova, G., Plotnikov, I., 2006, 24-28 GHz gyrotron-based sources for technological applications. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 500.

  345. Granatstein, V.L., Lawson, W., Latham, P.E., 1988, Feasibility of 30 GHz gyroklystron amplifiers for driving linear supercolliders. Conf. Digest, 13th Int. Conf. on Infrared and Millimeter Waves, Honolulu, Hawaii, Proc., SPIE 1039, 230-231.

    Google Scholar 

  346. Granatstein, V.L., Nusinovich, G.S., 1993, On the optimal choice of microwave systems for driving TeV linear colliders. Proc. 2nd Int. Workshop on Strong Microwaves in Plasmas, Moscow - Nizhny Novgorod - Moscow, ed. A.G. Litvak, Inst. of Applied Physics, Nizhny Novgorod, 1994, Vol. 2, 575-586.

    Google Scholar 

  347. Granatstein, V.L., Lawson, W., 1996, Gyro-amplifiers as candidate RF drivers for TeV linear colliders. IEEE Trans. on Plasma Science, 24, 648-665.

    Article  Google Scholar 

  348. Manheimer, W.M., Mesyats, G.A., Petelin, M.I., 1993, Super-high-power microwave radars. Proc. 2nd Int. Workshop on Strong Microwaves in Plasmas, Moscow - Nizhny Novgorod - Moscow, ed. A.G. Litvak, Inst. of Applied Physics, Nizhny Novgorod, 1994, Vol. 2, 632-641.

    Google Scholar 

  349. Manheimer, W.M., 1992, On the possibility of high power gyrotrons for super range resolution radar and atmospheric sensing. Int. J. Electronics, 72, 1165-1189.

    Article  Google Scholar 

  350. Clunie, D., Mesyats, G., Osipov, M.L., Petelin, M.I., Zagulov, P., Korovin, S.D., Clutterbuck, C.F., Wardrop, B., 1996, The design, construction and testing of an experimental high power, short-pulse radar. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol. 2, 886-902.

    Google Scholar 

  351. Danly, B.G., Blank, M., Calame, J.P., Levush, B., Nguyen, K., Pershing, D., Petillo, J., Hargreaves, T.A., True, R.B., Theiss, A.J., Good, G.R., Felch, K., James, B.G., Borchard, P., Chu, T.S., Jory, H., Lawson, W.G., Antonsen, T.M., Garven, M., 1999, High average power gyroklystrons for radar applications. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, Plenary M-3.

  352. Danly, B.G., 2002, Gyro-amplifiers for high power millimeter wave radar. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 361-362. Ngo, M.T., Danly, B.G., Myers, R., Pershing, D.E., Gregers-Hansen, V., Linde, G., 2002, High-power millimeter-wave transmitter for the NRL WARLOC radar. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 363-364.

  353. Danly, B.G., Cheung, J., Gregers-Hansen, V., Linde, G., Ngo, M., 2002, Warloc: a high-power millimeter-wave radar. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 233-234.

    Chapter  Google Scholar 

  354. Blank, M., Borchard, P., Cauffman, S., Felch, K., 2007, Design and demonstration of W-band gyrotron amplifiers for radar applications. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 364-366.

    Google Scholar 

  355. Linde, G.J., Ngo, M.T., Danly, B.G., Cheung, W.J., Hregers-Hansen, V., 2008, WARLOC: a high-power coherent 94 GHz radar, IEEE Trans. on Aerospace and Electronic Systems, 44, 1102-1117.

    Article  Google Scholar 

  356. MacDonald, M.E., Anderson, J.P., Lee, R.K., Gordon, D.A., McGrew, G.N., 2014, The HUSIR W-band transmitter. Lincoln Laboratory Journal, 21, No. 1, 106-114.

    Google Scholar 

  357. Tolkachev, A.A., Levitan, B.A., Solovjev, G.K., Veytsel, V.V., Farber, V.E., July 2000, A megawatt power millimeter-wave phased-array radar. IEEE Aerospace and Electronic Systems Magazine, 15, no. 7, 25-31.

    Article  Google Scholar 

  358. Tolkachov, A.A., Levitan, B.A., Petelin, M.I., 2008, Prospects of high-power millimeter-wave radar, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2009, Vol. 2, pp. 489-493.

  359. van’t Klooster, K., Petelin, M. Thumm, M. Aloisio, M., 2013, Ka-band groundstation antenna aspects for deep space telecommunication and radar. Proc. 7th European Conf. on Antennas and Propagation (EuCAP 2013), Gothenburg, Schweden, pp. 242-246.

  360. van’t Klooster, K., Petelin, M. Thumm, M., 2013, Deep space telecom and radar in a Ka-band ground station antenna. 23rd Int. Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2013), Sevastopol, Crimea, Ukraine, IEEE Catalog No. CFP13788, pp. 1109-1111.

  361. Bratman, V.L., Denisov, G.G., Ginzburg, N.S., and Petelin, M.I., 1983, FEL's with Bragg reflection resonators. Cyclotron autoresonance masers versus ubitrons. I.E.E.E. Journal Quantum Electronics, 19, 282-296.

    Article  Google Scholar 

  362. Marshall, T.C., 1985, Free electron lasers, MacMillan, New York.

    Google Scholar 

  363. Sprangle, P., Coffey, T., 1985, New high power coherent radiation sources, in Infrared and Millimeter Waves, Vol. 13, ed. K.J. Button, Academic Press, New York, 19-44.

  364. Stone, R.R., Jong, R.A., Orzechowski, T.J., Scharlemann, E.T., Throop, A.L., Kulke, B., Thomassen, K.I., Stallard, B.W., 1990, An FEL-based microwave system for fusion. J. Fusion Energy, 9, 77-101.

    Article  Google Scholar 

  365. Freund, H.P., Antonsen, T.M., Jr., 1992, Principles of free-electron lasers. Springer, Heidelberg, 1st edition, 1996, Chapman&Hall, London, 2nd edition, 2012, Springer, 3rd ed.

  366. Freund, H.P., Neil, G.R., 1999, Free-electron lasers: Vacuum electronic generators of coherent radiation. Proc. of the IEEE, 87, 782-803.

    Article  Google Scholar 

  367. Neil, G.R., 2014, Accelerator sources for THz science: A review. J Infrared Milli Terahz Waves, 35, No. 1, 5-16.

    Google Scholar 

  368. Neil, G.R., Williams, G.P., 2015, High power terahertz production from relativistic electron beams. Terahertz Science and Technology, 8, No. 2, 41-49.

    Google Scholar 

  369. Thumm, M., 2014, Effective cavity length of gyrotrons. J. Infrared, Millimeter, and Terahertz Waves, 35, No. 12, 1011-1017.

    Google Scholar 

  370. Twiss, R.Q., 1958, Radiation transfer and the possibility of negative absorption in radio astronomy. Aust. J. Phys., 11, 564-579; Twiss, R.Q., Roberts, J.A., 1958, Electromagnetic radiation from electrons rotating in an ionized medium under the action of a uniform magnetic field. Aust. J. Phys., 11, 424.

  371. Schneider, J., Stimulated emission of radiation by relativistic electrons in a magnetic field. 1959, Phys. Rev. Lett., 2, 504-505.

    Article  Google Scholar 

  372. Gaponov, A.V., Addendum, 1959, Izv. VUZ Radiofiz., 2, 837, an addendum to Gapanov, A.V., 1959, Interaction between electron fluxes and electromagnetic waves and waveguides. Izv. VUZ Radiofiz., 2, 450-462.

    Google Scholar 

  373. Kleinwächter, H., 1950, Zur Wanderfeldröhre. Elektrotechnik, 4, 245-246 (in German).

    Google Scholar 

  374. Bott, I.B., 1964, Tunable source of millimeter and submillimeter electromagnetic radiation. Proc. of the IEEE, 52, 330.

    Article  Google Scholar 

  375. Bott, L.B., 1965, A powerful source of millimetre wavelength electromagnetic radiation. Physics Letters, 14, 293-294.

    Article  Google Scholar 

  376. Hirshfield, J.L., Wachtel, J.M., 1964, Electron cyclotron maser. Phys. Rev. Lett., 12, 533-536.

    Article  Google Scholar 

  377. Gaponov, A.V., Petelin, M.I. and Yulpatov, V.K., 1967, The induced radiation of excited classical oscillators and its use in high frequency electronics. Izv. VUZ Radiofiz. 10, 1414 (Radiophys. Quantum Electronics, 10, 794-813).

  378. Jory, H., 1968, Investigation of electronic interaction with optical resonators for microwave generation and amplification. Research and Development Techn. Report ECOM-01873-F, Varian Associates, Palo Alto, California.

  379. Granatstein, V.L., Alexeff, I., eds., 1987, High-power microwave sources. Artech House, Boston, London.

    Google Scholar 

  380. Benford, J. Swegle, J., Schamiloglu, E., 2007, High-power microwaves, 2nd Ed., Taylor & Francis, New York, London.

    Book  Google Scholar 

  381. Nusinovich, G.S., 1999, Review of the theory of mode interaction in gyrodevices. IEEE Trans. on Plasma Science, 27, 313-326.

    Article  Google Scholar 

  382. Edgcombe, C.J., ed., 1993, Gyrotron oscillators-their principles and practice. Taylor & Francis, London.

    Google Scholar 

  383. Kartikeyan, M.V., Borie, E., Thumm, M.K.A., 2004, Gyrotrons – High power microwave and millimeter wave technology. Springer, Berlin.

    Google Scholar 

  384. Nusinovich, G., 2004, Introduction to the physics of gyrotrons. The Johns Hopkins University Press, Baltimore and London.

    Google Scholar 

  385. Bogdashov, A.A., and Denisov, G.G., 2004, Asympthotic theory of high-efficiency converters of higher-order waveguide modes into eigenwaves of open mirror lines. Radiophys. and Quantum Electr., 47, 283-296.

    Article  Google Scholar 

  386. Thumm, M., Arnold, A., Dammertz, G., Michel, G., Pretterebner, J., Wagner, D., Yang, X., 2004, An advanced dimple-wall launcher for a 140 GHz 1 MW continuous wave gyrotron. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 195-200.

    Google Scholar 

  387. Thumm, M., Yang, X., Arnold, A., Dammertz, G., Michel, G., Pretterebner, J., Wagner, D., 2005, A high-efficiency quasi-optical mode converter for a 140-GHz 1-MW CW gyrotron. IEEE Trans. on Electron Devices, 52, 818-824.

    Article  Google Scholar 

  388. Thumm, M., Arnold, A., Drumm, O., Jin, J., Michel, G., Piosczyk, B., Rzesnicki, T., Wagner, D., Yang, X., 2005, Quasi-optical mode converters in advanced high-power gyrotrons for nuclear fusion plasma heating. In: Quasi-Optical Control of Intense Microwave Transmission, eds. J.L. Hirshfield and M.I. Petelin, Springer, 325-351.

  389. Chirkov, A.V., Denisov, G.G., Kulygin, M.L., Malygin, V.I., Malygin, S.A., Pavel’ev, A.B., Soluyanova, E.A., 2006, Use of Huygens’s principle for analysis and synthesis of the fields in oversized waveguides, Radiophys. Quantum Electronics, 49, 344-353.

    Google Scholar 

  390. Jin, J., Thumm, M., Piosczyk, B., Kern, S., Flamm, J., Rzesnicki, T., 2009, Novel numerical method for the analysis and synthesis of the fields in highly oversized waveguide mode converters, IEEE Transactions on Microwave Theory and Techniques, 57, 1661-1668.

    Article  Google Scholar 

  391. Jin, J., Flamm, J., Kern S., Rzesnicki, T., Thumm, M., 2010, Design of phase correcting mirror system for coaxial-cavity ITER gyrotron, Proc. 11th IEEE Int. Vacuum Electronics Conference (IVEC 2010), Monterey, USA, pp. 29-30. Jin, J., Rzesnicki, T., Kern, S., Thumm, M., 2011, High-efficiency quasi-optical mode converter for the coaxial cavity gyrotron. Fusion Science and Technology, 59, 742-748.

    Article  Google Scholar 

  392. Flamm, J.H., Jin, J., Thumm, M.K., 2011, Wave propagation in advanced gyrotron output couplers, J. Infrared Milli Terahz Waves, 32, 887-896.

    Article  Google Scholar 

  393. Jin, J., Flamm, J., Jelonnek, J., Kern, S., Pagonakis, I., Rzesnicki, T., Thumm, M., 2013, High-efficiency quasi-optical mode converter for a 1-MW TE32,9-mode gyrotron. IEEE Trans. on Plasma Science, 41, No. 10, 2748-2753.

    Google Scholar 

  394. Jin, J., Gantenbein, G., Jelonnek, J., Rzesnicki, T., Thumm, M., 2015, Development of mode conversion waveguides at KIT. EPJ Web of Conferences, 87, 04003 (5 pp).

    Article  Google Scholar 

  395. Jin, J., Thumm, M., Gantenbein, G., Jelonnek, J., 2017, A numerical synthesis method for hybrid-type high power gyrotron launchers. IEEE Trans. on Microwave Theory and Techniques, 65, No. 3, 699-706.

    Google Scholar 

  396. Ives, L., Read, M., Bui, T., Marsden, D., Collins, G., Schaub, S., Guss, W., Temkin, R., Neilson. J., Gorelov, Y., Cengher, M., Moeller, C., LeViness, A., Lohr, J., 2017, Development of advanced output coupling structures for gyrotrons. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, RB2.3.

  397. Neilson, J.M., Ives, R.L., Schaub, S.C., Guss, W.C., Rosenzweig, G., Temkin, R.J., Borchard, P., 2018, Design and high-power test of an internal coupler to HE11 mode in corrugated waveguide for high-power gyrotrons. IEEE Trans. on Electron Devices, 65, No. 6, 2316-2320.

    Google Scholar 

  398. Zaginaylov, G.I., Shcherbinin, V.I., Schuenemann, K., Thumm, M.K., 2006, Influence of background plasma on electromagnetic properties of “cold” gyrotron cavity. IEEE Trans. on Plasma Science, 34, 512-517.

    Article  Google Scholar 

  399. Schlaich, A., Wu, C., Pagonakis, I., Avramidis, K., Illy, S., Gantenbein, G., Jelonnek, J., Thumm, M., 2015, Frequency-based investigation of charge neutralization processes and thermal cavity expansion in gyrotrons. J Infrared Milli Terahz Waves, 36, 797-818.

    Article  Google Scholar 

  400. Pendergast, K.D., Danly, B.G., Menninger, W.L., Temkin, R.J.,1992, A long-pulse CARM oscillator experiment. Int. J. Electronics, 72, 983-1004.

  401. Galuzo, S.Yu., Kanavets, V.I., Slepkov, A.I., Pletyushkin, V.A., 1982, Relativistic cyclotron accelerator exploiting the anomalous Doppler effect. Sov. Phys. Tech. Phys., 27, 1030-1032.

    Google Scholar 

  402. Didenko, A.N., Borisov, A.R., Fomenko, G.P., Shlapakovskii, A.S., Shtein, Yu.G., 1983, Cyclotron maser using the anomalous Doppler effect. Sov. Phys. Tech. Lett., 9, 572-573.

    Google Scholar 

  403. Ogura, K., Amin, M.R., Minami, K., Zheng, X.D., Suzuki, Y., Kim, W.S., Watanabe, T., Carmel, Y., Granatstein, V.L., 1996, Experimental demonstration of a high-power slow-wave electron cyclotron maser based on a combined resonance of Cherenkov and anomalous Doppler interactions. Phys. Rev. Lett. E, 53, 2726-2729.

    Article  Google Scholar 

  404. Guo, H., Chen, L., Keren, H., Hirshfield, J.L., Park, S.Y., Chu, K.R., 1982, Measurements of gain for slow cyclotron waves on an annular electron beam. Phys. Rev. Lett., 49, 730-733.

    Article  Google Scholar 

  405. Granatstein, V.L., Read, M.E., Barnett, L.R., 1982, Measured performance of gyrotron oscillators and amplifiers, in Infrared and Millimeter Waves, Vol. 5, ed. K.J. Button, Academic Press, New York, 267-304.

  406. Chu, K.R., Lin, A.T., 1988, Gain and bandwidth of the gyro-TWT and CARM amplifiers. IEEE Trans. on Plasma Science, Vol. 16, 90-103.

    Google Scholar 

  407. Chu, K.R., Chen, H.-Y., Hung, C.-L., Chang, T.-H., Barnett, L.R., Chen, S.-H., Yang, T.-T., Dialetis, D.J., 1999, Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Trans. on Plasma Science, 27, 391-404.

    Article  Google Scholar 

  408. Chu, K.R., 2002, Overview of research on the gyrotron traveling-wave amplifier. IEEE Trans. on Plasma Science, 30, 903-908.

    Article  Google Scholar 

  409. Denisov, G.G., Bratman, V.L., Phelps, A.D.R., Samsonov, S.V., 1998, Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth. IEEE Trans. on Plasma Science, 26, 508-518.

    Article  Google Scholar 

  410. Bratman, V.L., Cross, A.W., Denisov, G.G., Phelps, A.D.R., Samsonov, S.V., 2005, Microwave devices with helically corrugated waveguides. In: Quasi-Optical Control of Intense Microwave Transmission, eds. J.L. Hirshfield and M.I. Petelin, Springer, 105-114.

  411. Denisov, G.G., Gylyavin, M.Yu., 2016, Development of gyro-devices at IAP/GYCOM in the range from gigahertz to terahertz. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), Sept. 26-30, 2016, Copenhagen, Denmark, H2D.5.

  412. Guo, H., Chen, S.H., Granatstein, V.L., Rodgers, J., Nusinovich, G., Levush, B., Walter, M., Chen, W.J., 1997, A high performance, frequency doubling, inverted gyrotwystron. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 285-286.

    Google Scholar 

  413. Bratman, V.L., Kalynov, Yu.K., Manuilov, V.N., Samsonov, S.V., 2005, Submillimeter-wave large-orbit gyrotron. Radiophysics and Quantum Electronics, 48, 731-736.

    Article  Google Scholar 

  414. Ganguly, A.K., Ahn, S., Park, S.Y., 1988, Three dimensional nonlinear theory of the gyropeniotron amplifier. Int. J. Electronics, 65, 597-618.

    Article  Google Scholar 

  415. Nezhevenko, O.A., 1994, Gyrocons and magnicons: Microwave generators with circular deflection of the electron beam. IEEE Trans. on Plasma Science, 22, 756-772.

    Article  Google Scholar 

  416. Karliner, M.M., Kozyrev, E.V., Makarov, I.G., Nezhevenko, O.A., Ostreiko, G.N., Persov, B.Z., Serdobintsev, G.V., 1998, The magnicon – an advanced version of the gyrocon. Nucl. Instr. and Meth. in Phys. Res., A269, 459-473.

    Google Scholar 

  417. Yakovlev, V.P., Nezhevenko, O.A., R.B. True, R.B., 1997, Electron Gun for a High-Power X-Band Magnicon Amplifier, Proc. of the 1997 Particle Accelerator Conference, Vancouver, B.C., Canada.

  418. Hirshfield, J.L., LaPointe, M.A., Yoder, R.B., Ganguly, A.K., Wang, Ch., Hafizi, B., 1996, High-power microwave production by gyroharmonic conversion and co-generation. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 730-744.

    Google Scholar 

  419. Hirshfield, J.L., LaPointe, M.A., Wang, C., Ganguly, A.K., 1999, 20 GHz high-power gyroharmonic co-generation. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2000, Vol. 2, 728-739.

    Google Scholar 

  420. Wang, M., Ganguly, A.K., Hirshfield, J.L., 2002, Observation of stimulated emission at high gyroharmonics: basis for a synchrotron resonance maser. Phys. Rev. Lett., 87, 153801-1/4.

    Google Scholar 

  421. Phillips, R.M., 1960, The ubitron, a high-power traveling-wave tube based on a periodic beam interaction in unloaded waveguide. IRE Trans. Electron. Dev., 7, 231-241 and, 1988, History of the ubitron. Nucl. Instr. Meth., A272, 1-9, and, 1998, private communication.

  422. Drori, R., Jerby, E., 1997, Free-electron-laser-type interaction at 1 meter wavelength range. Nucl. Instr. Meth., A393, 284.

    Article  Google Scholar 

  423. Verhoeven, A.G.A., Bongers, W.A., Best, R.W.B., van Ingen, A.M., Manintveld, P., Urbanus, W.H., van der Wiel, M.J., Bratman, V.L., Denisov, G.G., Shmelyov, M.Yu., Nickel, H.-U., Thumm, M., Müller, G., Kasparek, W., Pretterebner, J., Wagner, D., Caplan, M., 1992, The 1 MW, 200 GHz FOM-Fusion-FEM. Conf. Digest 17th Int. Conf. on Infrared and Millimeter Waves, Pasadena (Los Angeles), Proc., SPIE 1929, 126-127.

    Google Scholar 

  424. Urbanus, W.H., Best, R.W.B., Bongers, W.A., van Ingen, A.M., Manintveld, P., Sterk, A.B., Verhoeven, A.G.A., van der Wiel, M.J., Caplan, M., Bratman, V.L., Denisov, G.G., Varfolomeev, A.A., Khlebnikov, A.S., 1993, Design of the 1 MW, 200 GHz, FOM fusion FEM. Nucl. Instr. Meth., A 331, 235-240.

  425. Verhoeven, A.G.A., Bongers, W.A., van der Geer, C.A.J., Manintveld, P., Schüller, F.C., Urbanus, W.H., Valentini, M., van der Wiel, M.J., 1995, A broad-tuneable free electron maser for ECW applications. Proc. 9th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating, Borrego Springs, California, 309-320.

  426. Verhoeven, A.G.A., Bongers, W.A., Bratman, V.L., Caplan, M., Denisov, G.G., van Dijk, G., van der Geer, C.A.J., Manintveld, P., Poelmann, A.J., Pluygers, J., Shmelyov, M.Yu., Smeets, P.H.M., Sterk, A.B., Urbanus, W.H., 1998, First high power experiments with the Dutch free electron maser. Physics of Plasmas, 5, 2029-2036.

    Article  Google Scholar 

  427. Verhoeven, A.G.A., Bongers, W.A., Bratman, V.L., Caplan, M., Denisov, G.G., van der Geer, C.A.J., Manintveld, P., Poelman, A.J., Pluygers, J., Shmelyov, M.Yu., Smeets, P.H.M., Sterk, A.B., Urbanus, W.H., 1998, First microwave generation in the FOM free electron maser. Plasma Phys. and Contr. Fusion, 40, Suppl. 8A, 139-156.

    Article  Google Scholar 

  428. Verhoeven, A.G.A., Bongers, W.A., Bratman, V.L., Caplan, M., Denisov, G.G., van der Geer, C.A.J., Manintveld, P., Poelman, A.J., Plomb, J., Savilov, A.V., Smeets, P.H.M., Urbanus, W.H., 1998, First generation of mm-waves in the dutch free-electron maser. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 21-23.

    Google Scholar 

  429. Urbanus, W.H., Bongers, W.A., van der Geer, C.A.J., Manintveld, P., Plomb, J., Pluygers, J., Poelmann, A.J., Smeets, P.H.M., Verhoeven, A.G.A., Bratman, V.L., Denisov, G.G., Savilov, V., Shmelyov, M.Yu., Caplan, M., Varfolomeev, A.A., Tolmachev, S.V., Ivanchenkov, S.N., 1999, High-power electrostatic free-electron maser as a future source for fusion plamsa heating: Experiments in the short-pulse regime. Phys. Rev. E, 59, 6058-6063.

    Article  Google Scholar 

  430. Verhoeven, A.G.A., Bogers, W.A., Bratman, V.L., Caplan, M., Denisov, G.G., van der Geer, C.A.J., Manintveld, P., Poelmann, A.J., Plomp, J., Savilov, A.V., Smeets, P.H.M., Sterck, A.B., Urbanus W.H., 1999, First mm-wave generation in the FOM free electron maser. IEEE Trans. on Plasma Science, 27, 1084-1091.

    Article  Google Scholar 

  431. Urbanus, W.H., Bratman, V.L., Bongers, W.A., Caplan, M., Denisov, G.G., van der Geer, C.A.J., Manintveld, P., Militsyn, B., Oomens, A.A.M., Poelman, A.J., Plomp, J., Pluygers, J., Savilov, A.V., Smeets, P.H.M., Sterk, A.B., Verhoeven, A.G.A., 2001, A high power, tunable free elctron maser for fusion. Fusion Engineering and Design, 53, 423-430.

    Article  Google Scholar 

  432. Militsyn, B.L., Bongers, W.A., Bratman, V.L., Caplan, M., Denisov, G.G., van der Geer, C.A.J., Manintveld, P., Oomens, A.A.M., Plomp, J., Pluygers, J., Poelman, A.J., Riet, M., Savilov, A.V., Smeets, P.H.M., Tito, C.J., Turk, G.H.B., Varfolomeev, A.A., Urbanus, W.H., 2002, First lasing of the Dutch fusion FEM in the long-pulse configuration. Nucl. Instr. Meth., A483, 259-262.

    Article  Google Scholar 

  433. Urbanus, W.H., Bongers, W.A., Bratman, V., van der Geer, C.A.J., Graswinckel, M.F., Manintveld, P., Militsyn, B.L., Savilov, A., and FEM Team, 2002, Long-pulse operation at constant output power and single-frequency mode of a high-power electrostatic free-electron maser with depressed collector. Phys. Rev. Lett., 89, 214801-1/-4.

  434. Freund, H.P., Granatstein, V.L., 1995, Long wavelength free electron laser in 1994. Nucl. Instr. Meth., A358, 551-554 and, 1996, Nucl. Instr. Meth., A375, 665-668 and, 1997, Nucl. Instr. Meth., A393, 9-12, and, 1998, Nucl. Instr. Meth., A407, 30-33, and, 1999 Nucl. Instr. Meth., A429, 33-36, and private communication.

  435. Shaw, A., Al-Shammaá, A., Stuart, R.A., Balfour, C., Lucas, J., 1996, First results of a CW industrial FEM. Nucl. Instr. Meth., A375, 245-247.

    Article  Google Scholar 

  436. Dylla, H.F., 1999, An overview of the user program for the Jefferson Lab free electron laser. Proc. SPIE, Vol. 3618, 388-395.

    Google Scholar 

  437. Neil, G.R., Bohn, C.L., Benson, S.V., Biallas, G., Douglas, D., Dylla, H.F., Evans, R., Fugitt, J., Grippo, A., Gubeli, J., Hill, R., Jordan, K., Li, R., Merminga, L., Piot, P., Preble, J., Shinn, M., Siggins, T., Walker, R., Yunn, B., 2000, Sustained kilowatt lasing in a free-electron laser with same-cell energy recovery. Phys. Rev. Lett., 84, 662-665.

    Article  Google Scholar 

  438. Benson, S.V., 2002, What have we learned from the kilowatt IR-FEL at Jefferson lab?, Nucl. Instr. Meth., A483, 1-7.

    Article  Google Scholar 

  439. Behre, C., Benson, S., Biallas, G., Boyce, J., Curtis, C., Douglas, D., Dylla, H.F., Dillon-Townes, L., Evans, R., Grippo, J., Hardy, D., Heckman, J., Hernandez-Garcia, C., Hiatt, T., Jordan, K., Merminga, L., Neil, G., Preble, J., Rutt, H., Shinn, M., Siggins, T., Toyokawa, H., Waldman, D.W., Walker, R., Wilson, N., Yunn, B., Zhang, S., 2004, First lasing of the IR upgrade FEL at Jefferson Lab. Nuclear Instruments & Methods in Physics Research, 528, No. 1-2, 19-22.

    Google Scholar 

  440. Boyce, J.R., 2005, The Jefferson Lab high power light source. Proc. 7th Workshop on High Energy Density and High Power RF, AIP Conf. Proceedings 807, 2006, 348-355.

  441. Thomas, A.W., Williams, G.P., 2007, The free electron laser at Jefferson Lab: the technology and the science. Proceedings of the IEEE, 95, 1679-1682.

  442. Kulipanov, G.N., Gavrilov, N.G., Knyazev, B.A., Kolobanov, E.I., Kotenkov, V.V., Kubanov, V.V., Matveenko, A.N., Medvedev, L.E., Miginsky, S.V., Mironenko, L.A., Ovchar, V.K., Popik,V.M., Salikova, T.V., Scheglov, M.A., Serednyakov, S.S., Shevchenko, O.A., Skrinski, A.N., Tcheskidov, V.G., Vinokurov, N.A., Demyanenko, M.A., Esaev, D.G., Naumova, E.V., Prinz, V.Y., Fedin, V.P., Gonchar, A.M., Peltek, S.E., Petrov, A.K., Merzhievsky, L.A., Cherkassky, V.S., 2008, Research highlights from the Novosibirsk 400 W average power THz FEL, Int. J. of Terahertz Science and Technology, 1, 51-125.

  443. Akberdin, R.R., Chesnokov, E.N., Dem’yanenko, M.A., Esaev, D.G., Goryachevskaya, T.N., Klimov, A.E., Knyazev, B.A., Kolobanov, E.I., Kozlov, A.S., Kubarev, V.V., Kulipanov, G.N., Kuznetsov, S.A., Matveenko, A.N., Medvedev, L.E., Naumova, E.V., Okotrub, A.V., Ovchar, V.K., Palagin, K.S., Paschin, N.S., Peltek, S.G., Petrov, A.K., Prinz, V.Ya., Popik, V.M., Salikova, T.V., Serednyakov, S.S., Skrinsky, A.N., Shevchenko, O.A., Scheglov, M.A., Vinokurov, N.A., Vlasenko, M.G., Yakovlev, V.V., Zaigraeva, N.S., 2009, High power THz applications on the NovoFEL, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, T3C01.0521.

  444. Kubarev, V.V., Kulipanov, G.N., Shevchenko, O.A., Vinokurov, N.A., 2010, Third harmonic lasing on Terahertz NovoFEL, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Mo-F2.1.

  445. Vinokurov, N., 2011, Free electron lasers as a High-power Terahertz Sources, J. Infrared Milli Terahz Waves, 32, 1123-1143.

    Article  Google Scholar 

  446. Kulipanov, G.N., Bagryanskaya, E.G., Chesnokov, E.N., Choporova, Y.Yu., Gerasimov, V.V., Getmanov, Y.V., Kiselev, S.L., Knyazev, B.A., Kubarev, V.V., Peltek, S.E., Popik, V.M., Salikova, T.V., Scheglov, M.A., Seredniakov, S.S., Shevchenko, O.A., Skrinsky, A.N., Veber, S.L., Vinokurov, N.A., 2015, Novosibirsk Free Electron Laser – facility, description and recent experiments. IEEE Trans. on Terahertz Science and Technology, 5, No. 5, 798-809.

    Google Scholar 

  447. Shevchenko, O.A., Arbuzov, V.S., Vinokurov, N.A., Vobly, P.D., Volkov, V.N., Getmanov, Y.V., Davidyuk, I.V., Deychuly, O.I., Dementyev, E.N., Dovzhernko, B.A., Knyazev, B.A., Kolobanov, E.I., Kondarov, A.A., Kozak, V.R., Kozyrev, E.V., Kurbarev, V.V., Kulipanov, G.N., Kuper, E.A., Kuptsov, I.V., Kurkin, G.Y., Krutikhin, S.A., Medvedev, L.E., Motygin, S.V., Ovchar, V.K., Osipov, V.N., Petrov, V.V., Pilan, A.M., Popik, V.M., Repkov, V.V., Salikova, T.V., Sedlyarov, I.K., Serednyakov, S.S., Skinsky, A.N., Tararyshkin, S.V., Tribendis, A.G., Cheskidov, V.G., Chernov, K.N., Shcheglov, M.A., 2017, Novosibirsk Free Electron Laser: Recent achievements and future prospects. Radiophysics and Quantum Electronics, 59, No. 8-9, 605-612.

    Google Scholar 

  448. Kaminsky, A.K., Perel'shtein, E.A., Sedykh, S.N., Ginzburg, N.S., Kuzikov, S.V., Peskov, N.Yu., Sergeev, A.S., 2010, Demonstrating high-power 30-GHz free-electron maser operation on a resonant load. Technical Physics Letters, 36, 211-215.

  449. Bandurkin, I.V. Kaminsky, A.K., Perelstein, E.A., Peskov, N.Yu., Savilov, A.V., Sedykh, S.N., 2012, High-power free-electron maser with frequency multiplication operating in a shortwave part of the millimeter wave range. Techn. Phys. Lett., 38, No. 8, 759-763.

    Google Scholar 

  450. Peskov, N.Yu., Bandurkin, I.V., Kaminsky, A.K., Kuzikov, S.V., Perlstein, E.A., Savilov, A.V., Sedykh, S.N., Vikharev, A.A., 2016, High-power free-electron maser operated in a two-mode frequency-multiplying regime. Phys. Rev. Accel. and Beams, 19, 060704 (6 pp).

    Article  Google Scholar 

  451. Jödicke, B., Mathews, H.-G., Agosti, G., Alberti, S., Bondeson, A., Hogge, J.P., Isaak, B., Muggli, P., Perrenoud, A., Tran, T.M., Tran, M.Q., 1989, Entwicklung von Hochleistungs-Gyrotrons in der Schweiz. ITG-Fachbericht 108, VDE-Verlag GmbH, Berlin, 191-195.

  452. Einat, M., Pilossof, M., Ben-Moshe, R., Hirshbein, H., Borodin, D., 2012, 95 GHz gyrotron with ferroelectric cathode. Physical Review Letters, 109, 185101 (5 pp).

    Article  Google Scholar 

  453. Avraham, E., Ben-Moshe, R., Pilossof, M., Einat, M., 2016, Frequency-replaceable ferro-electric cathode gyrotron for the entire Ka-band using replaceable resonator. IEEE Trans. on Electron Devices, 63, No. 5, 2097-2103.

    Google Scholar 

  454. Pilossof, M., Einat, M., 2016, Initial results of 95 GHz gyrotron with water cooled magnet. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, HSP.21.04.

  455. Pilossof, M., Einat, M., 2018, 95-GHz gyrotron with room temperature dc solenoid. IEEE Trans. on Electron Devices, 65, No. 8, 3474-3478 and, 2019, private communication.

  456. Lawrence Ives, R., Jory, H., Neilson, J., Chodorow, M., Feinstein, J., LaRue, A.D., Zitelli, L., Martorana, R., 1993, Development and test of a 500 kW, 8-GHz gyrotron. IEEE Trans. on Electron Devices, 40, 1316-1321.

    Article  Google Scholar 

  457. Felch, K., Chu, T.S., Feinstein, J., Huey, H., Jory, H., Nielson, J., Schumacher, R., 1992, Long-pulse operation of a gyrotron with beam/rf separation. Conf. Digest 17th Inf. Conf. on Infrared and Millimeter Waves, Pasadena, Proc., SPIE 1929, 184-195.

    Google Scholar 

  458. Chu, T.S., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Felch, K., Jory, H., Saraph, G., Wagner, D., 2000, Recent progress in producing megawatt gyrotrons for ECH applications. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 13-14.

  459. Felch, K., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Jory, H., 2002, Progress update on CPI 500 kW and 1 MW, multi-second-pulsed gyrotrons. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 332-333.

  460. Chu, T.S., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Felch, K., Jory, H., 2002, Operation of a 500 kW, 84 GHz, long pulse gyrotron with collector potential depression. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 5-6.

    Chapter  Google Scholar 

  461. Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Felch, K., Jory, H., 2002, Development and demonstration of gyrotron oscillators and amplifiers at CPI. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 7-15.

    Google Scholar 

  462. Bae, Y.S., Lee, H.K., Jeong, J.H., Namkung, W., Cho, M.H., Chu, S., 2003, Operation of high power 84-GHz gyrotron for KSTAR ECH system. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 38-39.

  463. Bae, Y.S., Na, Y.S., Oh, Y.K., Kwon, M., Bak, J.S., Lee, G.S., Jeong, J.H., Park, S.I., Cho, M.H., Namkung, W., Ellis, R.A., Park, H., Sakamoto, K., Takahashi, K., Yamamoto, T., 2007, Status of KSTAR electron cyclotron heating system, Fusion Science and Technology, 52, 321-333.

    Article  Google Scholar 

  464. Felch, K., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Jory, H., 2004, Demonstration of a 95 GHz, 100 kW, CW gyrotron oscillator. 5th IEEE Int. Vacuum Electronics Conf. (IVEC 2004), Monterey, CA, USA, 63-64.

  465. Cauffman, S., Blank, M., Cahalan, P., Felch, K., McGhee, R.W., Coffey, M., 2006, Operation of a 95 GHz 100 kW gyrotron in a high-Tc (BSCCO) magnet. Proc. Int. Vacuum Electronics Conference and Int. Vacuum Electron Sources (IVEC/IVESC 2006), Monterey, California, USA, 537-538.

  466. Cauffman, S., Blank, M., Felch, K., Borchard, P., Cahalan, P., Jory, H., 2007, Initial testing of a 95 GHz, 2.5 MW gyrotron. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 94-95.

    Google Scholar 

  467. Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Felch, K., Jory, H., 2008, Development and demonstration of a multi-megawatt 95 GHz gyrotron oscillator, Proc. 9th IEEE Int. Vacuum Electronics Conference (IVEC 2008), Monterey, CA, USA, 32-33.

  468. Felch, K., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Jory, H., 2008, Recent test results on a 95 GHz, 2 MW gyrotron, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, T2A2.1608.

  469. Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Felch, K., 2010, Development and demonstration of a multi-megawatt 95 GHz gyrotron, Proc. 11th IEEE Int. Vacuum Electronics Conference (IVEC 2010), Monterey, USA, pp. 189-190.

  470. Blank, M., Bochard, P., Cahalan, P., Cauffman, S., Felch, K., 2011, Megawatt class gyrotron development at CPI. Proc. 8th Int. Workshop on Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, p. 8.

  471. Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Felch, K., 2011, Demonstration of a multi-megawatt 95 GHz gyrotron, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), Houston, TX, USA, Th4A.5.

  472. Felch, K., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., 2012, Recent high-power gyrotron activities at 95, 110 and 170 GHz, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, pp. 109-110.

  473. Cauffman, S., Blank, M., Borchard, P., Felch, K., 2012, Recent development and testing of megawatt-class gyrotrons, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Tue-A-3-3.

  474. Shimozuma, T., Sato, M., Takita, Y., Kubo, S., Idei, H., Ohkubo, K., Kuroda, T. Tubokawa, Y., Huey, H., Jory, H., 1994, Development of a high power 84 GHz gyrotron. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Cat No.: AP 941228, 65-66.

    Google Scholar 

  475. Sato, M., Shimozuma, T. Takita, Y., Kubo, S., Idei, H., Ohkubo, K., Kudora, T., Watari, T., Loring, Jr., M., Chu, S., Felch, K., Huey, H., 1995, Development of a high power 84 GHz gyrotron. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 195-196.

    Google Scholar 

  476. Shimozuma, T., Sato, M., Takita, Y., Ito, S., Kubo, S., Idei, H., Ohkubo, K., Watari, T., Chu, T.S., Felch, K., Cahalan, P., Loring, Jr., C.M., 1997, The first experiments on an 84 GHz gyrotron with a single-stage depressed collector. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 194-195, and private com.

  477. Shimozuma, T., Sato, M., Kubo, S., Idei, H., Yoshimura, Y., Takita, Y., Ito, S., Kobayashi, S., Mizuno, Y., Ohkubo, K., and LHD Experimental Group G1, G2, 1999, ECRH system and initial experiments in Large Helical Device. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TU-D6.

  478. Malygin, S.A., 1986, A high-power gyrotron operating at the third harmonic of the cyclotron frequency. Soviet J. of Communications Techn. and Electronics, 31, 106-108.

    Google Scholar 

  479. Zapevalov, V.E., Manuilov, V.N., Malygin, O.V., Tsimring, Sh.E., 1994, High-power twin-beam gyrotrons operating at the second gyrofrequency harmonic. Radiophys. and Quantum Electronics, 37, 237-240.

    Article  Google Scholar 

  480. Bogdanov, S.D., Gyrotron Team, Solujanava, E.A., 1994, Industrial gyrotrons from GYCOM. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 351-352.

    Google Scholar 

  481. Goldenberg, A.L., Litvak, A.G., 1995, Recent progress of high-power millimeter wave-length gyrodevices. Phys. Plasmas, 2, 2562-2572 and private communications.

  482. Kurbatov, V.I., Malygin, S.A., Orlov, V.B., Solujanova, E.A., Tai, E.M., 1999, 70-140 GHz 1 MW gyrotrons on their way to CW operation. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 641-650.

    Google Scholar 

  483. Belousov, V.I., Bogdashov, A.A., Denisov, G.G., Kurbatov, V.I., Malygin, V.I., Malygin, S.A., Orlov, V.B., Popov, L.G., Solujanova, E.A., Tai, E.M., Usachov, S.V., 2004, Test results of the 84 GHz / 200 kW / CW gyrotron. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Nizhny Novgorod, Russia, May 17-20, 2004.

  484. Litvak, A.G., Agapova, M.V., Denisov, G.G., Kurbatov, V.I., Tai, E.M., Malygin, S.A., Myasnikov, V.E., Ilyin, V.I., Usachev, S., Zapevalov, V.E., 2002, New results in development of MW output power gyrotrons for fusion systems, Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 295-296, and Private Comm., 2002.

  485. Zapevalov, V.E., Belousov, V.I., Bogdashov, A.A., Bykov, Yu.V., Chirkov, A.V., Denisov, G.G., Glyavin, M.Yu., Kuftin, A.N., Litvak, A.G., Lygin, V.K., Malygin, V.I., Malygin, O.V., Moiseev, M.A., Agapova, M.V., Gnedenkov, A.Ph., Iljin, V.N., Khmara, D.V., Kostyna, A.N., Kurbatov, V.I., Myasnikov, V.E., Nichiporenko, V.O., Popov, L.G., Usachev, S.V., Malygin, S.A., Solujanova, E.A., Tai, E.M., Roschin, Yu.V., Iljin, V.I., 2004, Evolution of Russian gyrotrons for fusion and technological application. Proc. 10th Int. Conf. Displays and Vac. Electr., Garmisch-Partenkirchen, ITG-Fachbericht 183, 41-44.

    Google Scholar 

  486. Zapevalov, V.E., Kalynov, Khizhnjak, V I., Yu K., Lygin, V.K., Malygin, O.V., Malygin, S.A., Moiseev, M.A., Manuilov, V.N., Solujanova, E.A., Tai, E.M., 2004, Low frequency gyrotrons for fusion. Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Nizhny Novgorod, Russia, 2005, 403-408.

    Google Scholar 

  487. Belousov, V.I., Bogdashov, A.A., Denisov, G.G., Kurbatov, V.I., Malygin, V.I., Malygin, S.A., Orlov, V.B., Popov, L.G., Solujanova, E.A., Tai, E.M., Usachev, S.V., 2004, Test results of the 84 GHz/200 kW/CW gyrotron. Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating (EC13), ed. A. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2005, 388-392.

    Google Scholar 

  488. Denisov, G.G., Belousov, V.I., Chirkov, A.V., Litvak, A.G., Malygin, V.I., Shmelyov, M.Yu., Kurbatov, V.I., Kazanskiy, I.V., Solujanova, E.A., Tai, E.M., 2005, 200 kW/CW gyrotrons and transmission line components for fusion systems. Proc. 6th IEEE Int. Vacuum Electronics Conf. (IVEC 2005), Noordwijk, The Netherlands, 119-120.

  489. Denisov, G.G., Litvak, A.G., Myasnikov, V.E., Tai, E.M., 2005, Recent results in Gycom/ IAP development of high-power gyrotrons for fusion installations. Proc. 6th IEEE Int. Vacuum Electronics Conf. (IVEC 2005), Noordwijk, The Netherlands, 497-500.

  490. Kurbatov, V.I., Malygin, S.A., Orlov, V.B., Solujanova, E.A., Tai, E.M., Bogdashov, A.A., Chirkov, A.V., Denisov, G.G., Malygin, V.I., Pavelev, A.B., 2005, CW gyrotrons and attendant components at 200 kW microwave power level. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 113-118.

    Google Scholar 

  491. Zapevalov, V.E., Kalynov, Yu.K., Lygin, V.K., Malygin, O.V., Malygin, S.A., Moiseev, M.A., Manuilov, V.N., Soluyanova, E.A., Tai, E.M., Khizhnjak, V.I., 2006, Low-frequency gyrotrons for fusion studies. Radiophysics and Quantum Electronics, 49, No. 3, 185-195.

    Google Scholar 

  492. Bagryansky, P.A., Demin, S.P., Gospodchikov, E.D., Kovalenko, Yu.V., Malygin, V. I., Murakhtin, S.V., Savkin, V.Ya., Shalashov, A.G., Smolyakova, O.B., Solomakhin, A.L., Thumm, M. , Yakovlev, D.V.,2013, ECR heating system for the gas dynamic trap. Fusion Science and Technology, 63, (1 T), 40-45.

  493. Vlasov, S.N., Koposova, E.V., Pavel’ev, A.B., Khizhnyak, V.I., 1996, Gyrotrons with echelette resonators. Radiophysics and Quantum Electronics, 39, No. 6, 458– 462.

    Google Scholar 

  494. Agapov, L.N., Bogdanov, S.D., Venedictiov, N.P., Vlasov, S.N., Koposova, E.V., Kurbatov, V.I., Soluyanova, E.A., 2013, Electronic tuning of the working frequency of a gyrotron with an echelette structure. Radiophys. and Quantum Electr., 56, No. 7, 441-445.

    Google Scholar 

  495. Chen, Z.-G., 1992, Luo, L., 2000, private communications, Institute of Electronics, Chinese Academy of Sciences (IEAS), Beijing, P.R. China and Guo, H., Wu, D.S., Liu, G., Miao, Y.H., Qian, S.Z., Qin, W.Z., 1990, Special complex open-cavity and low-magnetic field high power gyrotron. IEEE Trans. on Plasma Science, 18, 326-333.

    Article  Google Scholar 

  496. Yao, X., Jiang, D., Feng, C., Yang, X., Zhang, H., Qi, X., Jiang, D., Li, Z., Wang, L., Zheng, S., 2000, Electron cyclotron wave current startup for ohmic discharges on the CT-6B tokamak. IEEE Trans. on Plasma Science, 28, 323-330.

    Article  Google Scholar 

  497. Xu, S.-X., Wang, B., Geng, Z.-H., Wang, H., Gu, W., Su, Y.-N., Liu, P.-K., 2011, Study of a quasi-optical mode converter for W-band gyrotron oscillator, IEEE Trans. on Plasma Science, 39, 3345-3350.

    Article  Google Scholar 

  498. Geng, Z.H., Su, Y.N., Liu, P.K., Xu, S.X., Gu, W., Liu, G.F., Du, C.H., Wang, H., 2014, Experiment and simulation of a W-band CW 30 kW low-voltage conventional gyrotron. IEEE Trans. on Electron Devices, 61, No. 6, 1789-1794.

    Google Scholar 

  499. Du, C.H., Liu, P.K., Chang, T.H., Yuan, C.P., Yu, S.J., Liu, G.F., Li, Z.D., Shi, S.H., Xue, Q.Z., Zhang, S.C., Gu, W., Su, Y.L., Geng, Z.H., Xu, S.X., 2013, Experiment study of a W-band frequency tunable gyrotron oscillator with over-length cylindrical cavity. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 3P-10.

  500. Du, C.-H., Qi, X.-B., Liu, P.-K., Chang, T.-H., Xu, S.-X., Geng, Z.-H., Hao, B.-L., Xiao, L., Liu, G.-F., Li, Z.-D., Shi, S.-H., Wang, H., 2014, Theory and experiment of a W-band tunable gyrotron oscillator. IEEE Trans. on Electron Devices, 61, No. 6, 1781-1788.

    Google Scholar 

  501. Sun, D., & Chen, H., Ma, G., Lei, W., Chen, H., Meng, F., 2014, A W-band third harmonic gyrotron with an iris cavity. J Infrared Milli Terahz Waves, 35, No. 5, 458-467.

    Google Scholar 

  502. Sun, D., Ma, G., Huang, Y., Zhuo, T., Chen, 2015, Experimental study on 95 GHz TE02 mode third-harmonic gyrotron, High Power Laser and Particle Beams, 27, 070101 (2 pp).

  503. Ma, G., Huang, Y., Zhuo, T., Sun, D., Jiang, Y., Li, Y., Ou, B., Chen, H., Meng, F., 2015, Experimental study of a 95 GHz gyrotron. 16th IEEE International Conference on Vacuum Electronics (IVEC 2015), Beijing, P.R. China, S23.6.

  504. Barroso, J.J., Castro, P.J., Pimenta, A.A., Spassov, V.A., Corrêa, R.A., Idehara, T., Ogawa, I., 1997, Operation of a 32 GHz gyrotron. Int. J. Infrared and Millim. Waves, 18, 2147-2160.

    Article  Google Scholar 

  505. Maekawa, T., Teremuchi, Y., Yoshimura, S., Matsunaga, K., 1996, ECH system using an 88 GHz gyrotron for the WT-3 tokamak. Proc. 11th Topical Conference on RF in Plasmas, Palm Springs, AIP Conf. Proc., 355, 437-440.

    Google Scholar 

  506. Idehara, T., 1995, private communication, Fukui University Japan.

  507. Carmel, Y., Chu, K.R., Dialetis, D., Fliflet, A., Read, M.E., Kim, K.J., Arfin, B., Granatstein, V.L., 1982, Mode competition, suppression, and efficiency enhancement in overmoded gyrotron oscillators. Int. J. on Infrared and Millimeter Waves, 3, 645-665.

    Article  Google Scholar 

  508. Carmel, Y., Chu, K.R., Read, M., Ganguly, A.K., Dialetis, D., Seeley, R., Levine, J.S., Granatstein, V.L., 1983, Realization of a stable and highly efficient gyrotron for controlled fusion research. Physical Review Letters, 50, 112-116.

    Article  Google Scholar 

  509. Rhinewine, M., Read, M.E., 1986, A TE1,3 gyrotron at 85 GHz. Int. J. Electronics, 61, 729-733.

    Article  Google Scholar 

  510. Behm, K, Jensen, E., 1986, 70 GHz gyrotron development at Valvo. Conf. Digest 11th Int. Conf. on Infrared and Millimeter Waves, Pisa, 218-220.

    Google Scholar 

  511. Kas'yanenko, D.V., Louksha, O.I., Piosczyk, B., Sominski, G.G., Thumm, M., 2002, Low-frequency parasitic oscillations in the 74.2 GHz moderate-power pulse gyrotron. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Acad. of Sciences, Nizhny Novgorod, 2003, Vol. 1, 162-167.

    Google Scholar 

  512. Kas'yanenko, D.V., Louksha, O.I., Sominski, G.G., Piosczyk, B., Thumm, M., 2004, Experimental investigation of electron energy spectra in the collector region of moderate-power millimeter-wave gyrotron. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 81-86.

    Google Scholar 

  513. Kas'yanenko, D., Louksha, O., Piosczyk, B., Sominski, G., Thumm, M., 2004, Measurements of electron beam characteristics in the moderate-power 4-mm gyrotron. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 661-662.

    Google Scholar 

  514. Kas'yanenko, D.V., Louksha, O.I., Piosczyk, B., Sominsky, G.G., Thumm, M., 2004, Low-frequency parasitic space-charge oscillations in the helical electron beam of a gyrotron. Radiophysics and Quantum Electronics, 47, Nos. 5-6, 414-420.

    Google Scholar 

  515. Louksha, O.I., Piosczyk, B., Louksa, O.I., Piosczyk, B., Sominski, G.G., Thumm, M., Samsonov, D.B., 2005, Effect of electron emission inhomogeneity on electron beam characteristics and output parameters of a 4-mm gyrotron. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 135-140.

    Google Scholar 

  516. Louksha, O., Piosczyk, B., Samsonov, D., Sominski, G., Thumm, M., 2006, Improvement of gyrotron beam quality by suppression of parasitic low-frequency oscillations. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 85.

  517. Louksha, O.I., Piosczyk, B., Sominski, G.G., Thumm, M.K., Samsonov, D.B., 2006, On potentials of gyrotron efficiency enhancement: measurements and simulations on a 4-mm gyrotron. IEEE Trans. on Plasma Science, 34, 502-511.

    Article  Google Scholar 

  518. Louksha, O.I., Piosczyk, B., Samsonov, D.B., Sominski, G.G., Thumm, M.K., 2007, Experimental study of gyrotron efficiency enhancement by improvement of electron beam quality, Conf. Digest Joint 32nd Int. Conf. on Infrared and Millimetre Waves and 15th Int. Conf. on TeraHertz Electronics, Cardiff, UK, 880-881.

    Google Scholar 

  519. Mourier, G., 1990, Current gyrotron development at Thomson Tubes Electroniques. Proc. Int. Workshop on Strong Microwaves in Plasmas, Suzdal, Inst. of Applied Physics, Nizhny Novgorod, 1991, 751-764 and, 1993, private communication.

  520. Kariya, T., Mitsunaka, Y., Imai, T., Saito, T., Tatematsu, Y., Sakamoto, K., Minami, R., Watanabe, O., Numakura, T., Endo, Y., 2007, Optimization of 28 GHz gyrotron output performance for ECRH experiment of the GAMMA 10. Trans. of Fusion Science and Technology, 51, 397-399.

    Article  Google Scholar 

  521. Ota, M., Kariya, T., Imai, T., Sakamoto, K., Minami, R., Endo, Y., Aoki, H., Iizumi, H., Kondou, H., 2011, Development of 28 GHz – 1 MW gyrotron for GAMMA10 ECRH. Trans. of Fusion Science and Technology, 59, 238-240.

    Article  Google Scholar 

  522. Kariya, T., Minami, R., Imai, T., Kato, K., Idei, H., Hanada, K., Zushi, H., Numakura, T., Endo, Y., Ichimura, M., 2015, Development of 28 GHz gyrotron for cooperative ECH study. Fusion Science and Technology, 68, 147-151.

    Article  Google Scholar 

  523. Kariya, T., Minami, R., Imai, T., Sakamoto, K., Kubo, S., Shimozuma, T., Takahashi, H., Ito, S., Mutoh, T., Mitsunaka, Y., Endo, Y., Shidara, H., Murofushi, N., Sakagoshi, Y., Yasutake, H., Okazaki, Y., 2009, Development of 28 GHz and 77 GHz 1 MW gyrotron for ECRH of magnetically confined plasma, Trans. of Fusion Science and Techn., 55, 91-94.

    Article  Google Scholar 

  524. Kariya, T., Minami, R., Imai, T., Ota, M., Endo, Y., Kubo, S., Shimozuma, T., Takahashi, T., Yoshimura, Y., Ito, S., Mutoh, T., Sakamoto, K., Mitsunaka, Y., 2011, Development of 28 GHz and 77 GHz, mega-watt gyrotrons for fusion devices, J. Infrared Milli Terahz Waves, 32, 295-310.

    Article  Google Scholar 

  525. Kubo, S., Nishiura, M., Tanaka, K., Shimozuma, T., Tatematsu, Y., Notake, T., Saito, T., Yoshimura, Y., Igami, H., Takahashi, H., Tamura, N., 2010, Collective Thomson scattering study using gyrotron in LHD. Plasma and Fusion Res.: Regular Articles, 5, S1038 (5 pp).

  526. Takahashi, H., Shimozuma, T., Ito, S., Kubo, S., Yoshimura, Y., Igami, H., Nishiura, M., Kobayashi, S., Mizuno, Y., Okada, K., Takita, Y., Yamada, I., Yokoyama, M., Ido, T., Shimizu, A., Ida, K., Matsuoka, S., Satake, S., Mutoh, T. and the LHD experiment group, 2011, Study of high Te plasma characteristics of LHD using high power 77 GHz gyrotrons, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 41-42.

  527. Shimozuma, T., Takahashi, H., Ito, S., Kobayashi, S., Kubo, S., Yoshimura, Y., Igami, H., Nishiura, M., Ogasawara, S., Makino, R., Okada, K., Takita, Y., Ito, Y., Mutoh, T., Minami, R., Kariya, T., Imai, T., 2011, Optimization of high power and high efficiency operation of 77 GHz gyrotrons for ECRH in the large helical device, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), Houston, TX, USA, W2A.1.

  528. Kariya, T., Minami, R., Imai, T., Kubo, S., Shimozuma, T., Takahashi, H., Yoshimura, Y., Ito, S., Mutoh, T., Ota, M., Endo, Y., Sakamoto, K., 2011, Development of mega-watt gyrotrons for fusion research. Trans. of Fusion Science and Technology, 59, 241-243.

    Article  Google Scholar 

  529. Ogasawara, S., Kubo, S., Nishiura, M., Tatematsu, Y., Saito, T., Tanaka, K., Shimozuma, T., Yoshimura, Y., Igami, H., Takahashi, H., Ito, S., Takita, Y., Kobayashi, S., Mizuno, Y., Okada, K., Minami, R., Kariya, T., Imai, T., 2012, Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD. Review of Scientific Instruments, 83, 10D731-1 (3 pages).

  530. Ito, S., Shimozuma, T., Yoshimura, Y., Igami, H., Takahashi, H., Nishiura, M., Kobayashi, S., Mizuno, Y., Okada, K., Kubo, S., 2015, Recent results of gyrotron operation in NIFS. EPJ Web of Conferences, 87, 04013 (6 pp).

    Article  Google Scholar 

  531. Kariya, T., Imai, T., Minami, R., Numakura, T., Eguchi, T., Kato, T., Endo, Y., Ichimura, M., Shimozuma, T., Kubo, S., Takahashi, H., Yoshimura, Y., Igami, H., Ito, S., Mutoh, T., Sakamoto, K., Idei, H., Zushi, H., Nagasaki, K., Sano, F., Ono, M., Mitsunaka, Y., 2015, Development of gyrotrons for fusion with power exceeding 1 MW over a wide frequency range. Nucl. Fusion, 55, 093009 (10 pp).

    Article  Google Scholar 

  532. Kariya, T., Imai, T., Minami, R., Sakamoto, K., Oda, Y., Ikeda, R., Shimozuma, T., Kubo, S., Idei, H., Numakura, T., Tsumura, K., Ebashi, Y., Okada, M., Nakashima, Y., Yoshimura, Y., Takahashi, H., Ito, S., Hanada, K., Nagasaki, K., Ono, M., Eguchi, T., Mitsunaka, Y., 2017, Development of over-MW gyrotrons for fusion at 14 GHz to sub-THz frequencies. Nucl. Fusion, 57, 066001 (9 pp).

    Article  Google Scholar 

  533. Li, H., Xie, Z., Wang, W., Luo, Y., Du, P., Den, X., Wang, H., Yu, S., Niu, X., Wang, L., Liu, S., 2002, 35 GHz third-harmonic gyrotron with a permanent magnet system. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 301-302.

    Google Scholar 

  534. Li, H., Xie, Z.-L., Wang, W., Luo, Y., Du, P., Den, X., Wang, H., Yu, S., Niu, X., Wang, L., Liu, S., 2003, A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system. IEEE Trans. on Plasma Science, 31, 264-271.

    Article  Google Scholar 

  535. Niu, X.-J., Wang, L., Li, H.-F., 2009, 94 GHz second-harmonic gyrotron with complex cavity, Proc. 10th IEEE Int. Vacuum Electronics Conference (IVEC 2009), Rome, Italy, pp. 469-470.

  536. Niu, X.-J., Wang, L., Li, H.-F., 2009, Experimental investigation of 94 GHz second-harmonic gyrotrons, Proc. 10th IEEE Int. Vacuum Electronics Conference (IVEC 2009), Rome, Italy, pp. 485-486.

  537. Niu, X.J., Li, W., Yu, S., Li, H.F., 2009, 94 GHz, 90 kW, CW, low-voltage gyrotron, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, M5E52.0392.

  538. Liu, Y.-H., Niu, X., Liu, H., Yao, J., Zhou, J., Lei, C., Jiang, H., Yang, Y., Sun, Y., 2012, Design and experiment demonstration of a W-band second-harmonic gyrotron with complex cavity, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, pp. 337-338.

  539. Niu, X.J., Gu, L., 2012, Experiment of 94 GHz, CW, low-voltage gyrotron, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, pp. 507-508.

  540. Niu, X.J., Lei, C.J., Liu, Y.H., Li, H.F., 2013, A study on 94 GHz low-voltage, low-current gyrotron. IEEE Trans. on Electron Devices, 65, 3907-3912.

    Google Scholar 

  541. Kim, S.G., Sawant, A., Lee, I., Kim, D., Choe, M., Won, J.-H., Kim, J., So, J., Jang, W., Choi, E., 2016, System development and performance testing of a W-band gyrotron. J. Infrared Milli Terahz Waves, 37, 209-229.

    Article  Google Scholar 

  542. Felch, K., Chu, T.S., DeHope, W., Huey, H., Jory, H., Nielson, J., Schumacher, R., 1994, Recent test results on a high-power gyrotron with an internal, quasi-optical converter. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 333-334.

    Google Scholar 

  543. Neilson, J.M., Felch, K., Chu, T.S., Feinstein, J., Hess, C., Huey, H.E., Jory, H.R., Mizuhara, Y.M., Schumacher, R., 1995, Design and tests of a gyrotron with a radially-extracted electron beam. IEEE Trans. on Plasma Science, 23, 470-480.

    Article  Google Scholar 

  544. Felch, K., Borchard, P., Chu, T.S., Jory, H., Loring, Jr., C.M., Neilson, J., Lorbeck, J.A., Blank, M., 1995, Long-pulse tests on a high-power gyrotron with an internal, quasi-optical converter. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 191-192.

    Google Scholar 

  545. Felch, K., Blank, M., Borchard, P., Chu, T.S., Feinstein, J., Jory, H.R., Lorbeck, J.A., Loring, C.M., Mizuhara, Y.M., Nielson, J.M., Schumacher, R., Temkin, R.J., 1996, Long-pulse and CW tests of a 110 GHz gyrotron with an internal, quasi-optical converter. IEEE Trans. on Plasma Science, 24, 558-569.

    Article  Google Scholar 

  546. Felch, K., Borchard, P., Cahalan, P., Chu, T.S., Jory, H., Loring Jr., C.M., Moeller, C.P., 1996, Status of 1 MW CW gyrotron development at CPI. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, AM16.

  547. Felch, R., Borchard, P., Cauffman, S., Callis, R.W., Cahalan, P., Chu, T.S., Denison, D., Jory, H., Mizuhara, M., Remsen, D., Saraph, G., Temkin, R.J., 1998, Status report on a 110 GHz, 1 MW, CW gyrotron with a CVD diamond window. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 376-368.

    Google Scholar 

  548. Chu, S., Blank, M., Borchard, P., Cauffman, S., Felch, K., Jory, H., 2004, Development of a 1.5 MW gyrotron at 110 GHz. 5th IEEE Int. Vacuum Electronics Conf. (IVEC 2004), Monterey, CA, USA, 30-31.

  549. Chu, T.S., Blank, M., Cahalan, P., Cauffman, S., Felch, K., Jory, H., 2005, High power testing of a 110 GHz gyrotron with a single-stage depressed collector. Proc. 6th IEEE Int. Vacuum Electronics Conf. (IVEC 2005), Noordwijk, The Netherlands, 117-118.

  550. Felch, K., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Jory, H., Gorelov, Y., Lohr, J., 2008, Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications. Nucl. Fusion, 48, 054008 (4 pp).

    Article  Google Scholar 

  551. Chu, T.S., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Felch, K., Jory, H., 2003, Development of high power gyrotrons at 110 GHz and 140 GHz. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 32-33.

  552. Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Felch, K., Jory, H., 2004, Development of long-pulse, megawatt-class gyrotron oscillators at 110 and 140 GHz. Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating (EC13), ed. A. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2005, 383-387.

    Google Scholar 

  553. Felch, K., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Jory, H., 2005, Recent advances in increasing output power and pulse duration in gyrotron oscillators. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 237-238.

    Google Scholar 

  554. Jory, H., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Felch, K., 2005, CPI gyrotrons for fusion EC heating. Proc. 7th Workshop on High Energy Density and High Power RF, AIP Conference Proceedings 807, 2006, 180-190.

  555. Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Felch, K., Jory, H., 2005, High-power gyrotron oscillator and broadband gyro-amplifier development at CPI. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2006, Vol. 1, 46-57.

    Google Scholar 

  556. Lohr, J., Cengher, M., Deboo, J., Gorelov, I.A., Moeller, C.P., Neilson, J., Young, D., Ponce, D., 2009, Performance of the six gyrotron system on the DIII-D tokamak, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, R4D03.0203.

  557. Lohr, J., Cengher, M., Doane, J.L., Ellis, R.A., Gorelov, Y.A., Kolemen, E., Moeller, C.P., Noraky, S., Penaflor, B.G., Ponce, D.M., Prater, R., Shapiro, M., Tax, D., 2012, Performance, diagnostics, controls and plans for the gyrotron system on the DIII-D tokamak. EPJ Web of conferences, 32, 02009/1-6.

    Article  Google Scholar 

  558. Felch, K., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., 2012, Gyrotrons for magnetic fusion applications at 110 GHz and 170 GHz. EPJ Web of Conferences, 32, 04007/1-5.

    Article  Google Scholar 

  559. Cauffman, S., Blanck, M., Borchard, P., Felch, K., 2013, Overview of fusion gyrotron development programs at 110 GHz, 117.5 GHz, 140 GHz, and 170 GHz. Proc. 38th Int. Conf. Infrared, Millim. and Terahz Waves (IRMMW-THz 2013), Mainz, Germany, Mo1-1.

  560. Cauffman, S., Blank, M., Borchard, P., Felch, K., 2014, First tests of a 117.5 GHz 1.8 megawatt gyrotron for plasma heating and current drive. Proc. 15th IEEE Int. Vacuum Electronics Conference (IVEC 2014), Monterey, CA, USA, 3.1.

  561. Felch, K., Blank, M., Borchard, P., Cauffman, S., 2014, Progress in the development of 117.5 GHz and 170 GHz gyrotrons. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W4_D-25.7.

  562. Felch, K., Blank, M., Borchard, P., Cauffman, S., 2015, Recent tests on 117.5 GHz and 170 GHz gyrotrons. EPJ Web of Conferences, 87, 04006 (4 pp).

  563. Lohr, J., Anderson, J., Brambila, R., Cengher, M., Chen, X., Ellis, R.A., Grosnickle, W., Moeller, C., Prater, R., Ponce, D., Riford, L., Torrezan, A.C., 2016, The multiple gyrotron system on the DIII-D tokamak. J Infrared Milli Terahz Waves, 37, No. 1, 21-44.

    Google Scholar 

  564. Cauffman, S., Blank, M., Borchard, P., Felch, K., 2016, Fusion gyrotron development in the 110-170-GHz frequency range. 17th IEEE International Vacuum Electronics Conference (IVEC 2016), April 19-21, 2016, Monterey, CA, USA, Invited Keynote, P4.11.

  565. Blank, M., Borchard, P., Cauffman, S., Felch, K., 2017, High power and high frequency gyrotron development at CPI. Proc. 10th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – Moscow, Russia, pp. 27-28.

  566. Felch, K., Blank, M., Cauffman, S., Borchard, P.: Status of testing activities on gyrotrons for magnetic fusion applications, 2017, Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, WC2.3.

  567. Borie, E., Dammertz, G., Gantenbein, G., Kuntze, M., Möbius, A., Nickel, H.-U., Piosczyk, B., Thumm, M., 1993, 0.5 MW/140 GHz TE10,4 Gyrotron with built-in highly efficient quasioptical converter. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 519-520.

    Google Scholar 

  568. Geist, T., Thumm, M., Wiesbeck, W., 1991, Linewidth measurement on a 140 GHz gyrotron. Conf. Digest 16th Int. Conf. on Infrared and Millimeter Waves, Lausanne, Proc., SPIE 1576, 272-273.

    Google Scholar 

  569. Thumm, M., Borie, E., Dammertz, G., Kuntze, M., Möbius, A., Nickel, H.-U., Piosczyk, B., Wien, A., 1993. Development of high-power 140 GHz gyrotrons for fusion plasma applications. Proc. 2nd Int. Workshop on Strong Microwaves in Plasma, Moscow - Nizhny Novgorod -Moscow, Inst. of Applied Physics, Nizhny Novgorod, 1994, Vol. 2, 670-689.

    Google Scholar 

  570. Gantenbein, G., Borie, E., Dammertz, G., Kuntze, M., Nickel, H.-U., Piosczyk, B., Thumm, M., 1994, Experimental results and numerical simulations of a high power 140 GHz gyrotron. IEEE Trans. Plasma Science, 22, 861-870. Dumbrajs, O., Thumm, M., Pretterebner, J., Wagner, D., 1992, A cavity with reduced mode conversion for gyrotrons. Int. J. Infrared and Millimeter Waves, 13, 825-840.

    Google Scholar 

  571. Thumm, M., Borie, E., Dammertz, G., Höchtl, O., Kuntze, M., Möbius, A., Nickel, H.-U., Piosczyk, B., Semmle, C., Wien, A., 1994, Development of advanced high-power 140 GHz gyrotrons at KfK. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 57-58.

    Google Scholar 

  572. Thumm, M., Braz, O., Dammertz, G., Iatrou, C.T., Kuntze, M., Piosczyk, B., Soudeé, G., 1995, Operation of an advanced, step-tunable 1 MW gyrotron at frequencies between 118 GHz and 162 GHz. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 199-200.

    Google Scholar 

  573. Dammertz, G., Braz, O., Iatrou, C.T., Kuntze, M., Möbius, A., Piosczyk, B., Thumm, M., 1995, Highly efficient long-pulse operation of an advanced 140 GHz, 0.5 MW gyrotron oscillator. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 285-286.

    Google Scholar 

  574. Piosczyk, B., Iatrou, C.T., Dammertz, G., Thumm, M., 1995, Operation of gyrotrons with single-stage depressed collectors. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 491-492.

    Google Scholar 

  575. Dammertz, G., Braz, O., Kuntze, M., Piosczyk B., Thumm, M., 1997, Step-tunable 1 MW broadband gyrotron with Brewster window. Proc. 10th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Ameland, The Netherlands, 483-488.

  576. Dammertz, G., Braz, O., Chopra, A.K., Koppenburg, K., Kuntze, M., Piosczyk, B., Thumm, M., 1999, Recent results of the 1-MW, 140-GHz, TE22,6-mode gyrotron. IEEE Trans. on Plasma Science, 27, 330-339.

    Article  Google Scholar 

  577. Koppenburg, K., Arnold, A., Borie, E., Dammertz, G., Drumm, O., Kartikeyan, M.V., Piosczyk, B., Thumm, M., Yang, X., 2002, Design of a multifrequency high power gyrotron at FZK. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 153-154.

    Chapter  Google Scholar 

  578. Thumm, M., Arnold, A., Borie, E., Dammertz, G., Drumm, O., Heidinger, R., Kartikeyan, M.V., Koppenburg, K., Meier, A., Piosczyk, B., Wagner, D., Yang, X., 2003, Development of frequency step tunable 1 MW gyrotrons in D-band. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 30-31.

  579. Yang, X., Drumm, O., Arnold, A., Borie, E., Dammertz, G., Koppenburg, K., Wagner, D., Thumm, M., 2003, Design of a quasi-optical mode converter for a frequency step-tunable gyrotron. Int. J. of Infrared and Millimeter Waves, 24, 1599-1608.

    Article  Google Scholar 

  580. Koppenburg, K., Arnold, A., Borie, E., Dammertz, G., Drumm, O., Kartikeyan, M.V., Piosczyk, B., Thumm, M., Yang, X., 2003, Recent results of the multifrequency high power gyrotron development at FZK. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 125-126.

    Google Scholar 

  581. Koppenburg, K., Arnold, A., Borie, E., Dammertz, G., Drumm, O., Kartikeyan, M.V., Piosczyk, B., Thumm, M., Yang, X., 2004, Design of a step-tunable 105-140 GHz, 1 MW gyrotron at FZK. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 55-59.

    Google Scholar 

  582. Prinz, O., Arnold, A., Gantenbein, G., Liu, Y., Thumm, M., Wagner, D., 2009, Highly efficient quasi-optical mode converter for a multifrequency high-power gyrotron, IEEE Transactions on Electron Devices, 56, 828-834.

    Article  Google Scholar 

  583. Prinz, O., Gantenbein, G., Thumm, M., 2007, Matching the output beam of a multi-frequency gyrotron to a Brewster window with small aperture, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 49-50.

  584. Prinz, O., Arnold, A., Dammertz, G., Flamm, F., Gantenbein, G., Jin, J., Piosczyk, B., Rzesnicki, T., Thumm, M., 2007, Quasi-optical mode converter for a multi-frequency D-band gyrotron, Conf. Digest Joint 32nd Int. Conf. on Infrared and Millimetre Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 888-889.

    Google Scholar 

  585. Arnold, A., Prinz, O., Wagner, D., Thumm, M. 2007, Operation of a quasi-optical multi-mode generator for 105-150 GHz, Conf. Digest Joint 32nd Int. Conf. on Infrared and Millimetre Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 434-435.

    Google Scholar 

  586. Prinz, O., Gantenbein, G., Thumm, M., 2008, Advanced quasi-optical mode converter for a multi-frequency gyrotron, Proc. 9th IEEE Int. Vacuum Electronics Conference (IVEC 2008), Monterey, CA, USA, 64-65.

  587. Agapova, M.V., Alikaev, V.V., Axenova, L.A., Bogdashov, A.A., Borshchegovsky, A.S., Keyer, A.P., Denisov, G.G., Flyagin, V.A., Fix, A.Sh., Ilyin, V.I., Ilyin, V.N., Khmara, V.A., Kostyna, A.N., Kuftin, A.N., Myasnikov, V.E., Nichiporenko, V.O., Popov, L.G., Zapevalov, V.E., Zakirov, F.G., 1995, Long-pulse 110 GHz/1 MW gyrotron. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 205-206.

    Google Scholar 

  588. Myasnikov, V.E., Agapova, M.V., Alikaev, V.V., Bogdashov, A.A., Borshegovsky, A.A., Denisov, G.G., Flyagin, V.A., Fix, A.Sh., Ilyin, V.I., Ilyin, V.N., Khmara, V.A., Khmara, D.V., Kostyna, A.N., Nichiporenko, V.O., Popov, L.G., Zapevalov, V.E., 1997, Long-pulse operation of 110 GHz 1 MW gyrotron. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 102-103.

    Google Scholar 

  589. Myasnikov, V.E., Agapova, M.V., Alikaev, V.V., Borshchegovsky, A.S., Denisov, G.G., Flyagin, V.A., Fix, A.Sh., Ilyin, V.I., Ilyin, V.N., Keyer, A.P., Khmara, V.A., Khmara, D.V., Kostyna, A.N., Nichiporenko, V.O., Popov, L.G., Zapevalov, V.E., 1996, Megawatt power level long-pulses 110 GHz and 140 GHz gyrotrons. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 577-598.

    Google Scholar 

  590. Zapevalov, V.E., 1996, Achievement of stable operation of powerful gyrotrons for fusion. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 599-613 and private communications.

  591. Glyavin, M.Yu., Kuftin, A.N., Venediktov, N.P., Zapevalov, V.E., 1997, Experimental investigation of a 110 GHz/1 MW gyrotron with the one-step depressed collector. Int. J. Infrared and Millimeter Waves, 18, 2129-2136.

    Article  Google Scholar 

  592. Myasnikov, V.E., Agapova, M.V., Nichiporenko, V.O., Popov, L.G., Usachev, S.V., Iljin, V.N., Khmara, V.A., Litvak, A.G., Denisov, G.G., Zapevalov, V.E., Flyagin, V.A., Fix, A.Sh., Alikaev, V.V., Iljin, V.I., 1999, Development of 1-MW long-pulse/CW gyrotrons in 110-170 GHz frequency range. Proc. Int. University Conf. “Electronics and Radiophysics of Ultra-High Frequencies” (UHF-99), 1999, St. Petersburg, Russia, 138-141.

  593. Myasnikov, V.E., Agapova, M.V., Nichiporenko, V.O., Popov, L.G., Usachev, S.V., Iljin, V.N., Khmara, V.A., Litvak, A.G., Denisov, G.G., Zapevalov, V.E., Flyagin, V.A., Fix, A.Sh., Alikaev, V.V., Iljin, V.I., 1999, Development of 1-MW long-pulse/CW gyrotrons in 110-170 GHz frequency range. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2000, Vol. 2, 610-614.

    Google Scholar 

  594. Denisov, G.G., 1999, Development of 1 MW output power level gyrotrons for fusion systems. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 967-986.

    Google Scholar 

  595. Denisov, G.G., Zapevalov, V.E., Litvak, A.G., Myasnikov, V.E., 2003, Megawatt gyrotrons for ECR heating and current-drive systems in controlled-fusion facilities. Radio-physics and Quantum Electronics, 46, 757-768.

    Article  Google Scholar 

  596. Litvak, A.G., Denisov, G.G., Myasnikov, V.E., Tai, E. M, 2005, Recent results in Gycom/IAP development of high-power gyrotrons for fusion installations. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 233-234.

  597. Denisov, G.G., Kuftin, A.N., Malygin, V.I., Venediktov, N.P., Vinogradov, D.V., Zapevalov, V.E., 1992, 110 GHz gyrotron with a built-in high-efficiency converter. Int. J. Electronics, 72, 1079-1091.

    Article  Google Scholar 

  598. Venediktov, N.P., Glyavin, M.Y., Zapevalov, V.E., Kuftin, A.N., 1998, Experimental study of a 110-GHz/1-MW gyrotron with a single-stage depressed collector. Radiophysics and Quantum Electronics, 41, 449-456.

    Article  Google Scholar 

  599. Bogdashov, A.A., Chirkov, A.V., Denisov, G.G., Kuftin, A.N., Lygin, V.K., Moiseev, M.A., Zapevalov, V.E., 2000, Development of the step tunable 140/110 GHz 1 MW gyrotron for fusion. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 21-22, and, 2000, private communications.

  600. Denisov, G.G., Belousov, V.I., Pavel'ev, A.B., Chirkov, A.V., Ilin, V.N., Kurbatov, V.I., Malygin, S.A., Myasnikov, V.E., Orlov, V.B., Soluyanova, E.A., Sokolov, E.V., Tai, D.M., 2006, Multi-frequency gyrotron with BN Brewster window. Conf. Digest 31st Int. Conf. on Infrared and Millim. Waves and 14th Int. Conf. on Terahz Electron., Shanghai, China, 75.

  601. Nichiporenko, V.O., Agapova, M.V., Denisov, G.G., Ilyin, V.I., Litvak, A.G., Malygin, S.A., Myasnikov, V.E., Popov, L.G., Solujanova, E.A., Zapevalov, V.E., Tai, E.M., 2006, State of the art of 1 MW/105-140 GHz/10 sec gyrotron project in GYCOM. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 338.

  602. Nagashima, T., Sakamoto, K., Maebara, S., Tsuneoka, M., Okazaki, Y., Hayashi, K., Miyake, S., Kariya, T., Mitsunaka, Y., Itoh, Y., Sugawara, T., Okamoto, T., 1990, Test results of 0.5 MW gyrotron at 120 GHz and 1.5 MW at 2 GHz Klystron for fusion application. Proc. Int. Workshop on Strong Microwaves in Plasmas, Suzdal, Inst. of Applied Physics, Nizhny Novgorod, 1991, 739-750 and, Okazaki, Y., 1994, private communication, Toshiba, Ohtawara, Japan.

  603. Sakamoto, K, Tsuneoka, M., Maebava, S., Kasugai, A., Fujita, H., Kikuchi, M., Yamamoto, T., Nagashima, T., Kariya, T., Okazaki, Y, Shirai, N., Okamoto, T. Hayashi, K., Mitsunaka, Y., Hirata, Y., 1992, Development of a high power gyrotron for ECH of tokamak plasma. Conf. Digest 17th Int. Conf. on Infrared and Millim. Waves, Pasadena, SPIE 1929, 188-189.

    Google Scholar 

  604. Sakamoto, K., Tsuneoka, M., Kasugai, A., Maebara, S., Nagashima, T., Imai, T., Kariya, T., Okazaki, Y., Shirai, N., Okamoto, T., Hayashi, K., Mitsunaka, Y., Hirata, Y., 1993, Development of a high power gyrotron for fusion application in JAERI. Proc. 2nd Int. Workshop on Strong Microwaves in Plasmas, Moscow - Nizhny Novgorod - Moscow, ed. A.G. Litvak, Inst. of Applied Physics, Nizhny Novgorod, 1994, Vol. 2, 601-615.

    Google Scholar 

  605. Sakamoto, K, Tsuneoka, M., Kasugai, A. Takahashi, K., Maebara, S., Imai, T., Kariya, T., Okazaki, Y., Hayashi, K., Mitsunaka, Y., Hirata, Y., 1994, Development of 110 GHz CPD gyrotron. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 63-64.

    Google Scholar 

  606. Sakamoto, K., Tsuneoka, M., Kasugai, A., Imai, T., Kariya, T., Hayashi, K., Mitsunaka, Y., 1994, Major improvement of gyrotron efficiency with beam energy recovery. Phys. Rev. Lett., 73, 3532-3535.

    Article  Google Scholar 

  607. Hayashi, K., Hirata, Y., Mitsunaka, Y., 1996, Startup analysis of a gyrotron power supply system for depressed-collector operation. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, AM11.

  608. Sakamoto, K., Kasugai, A., Tsuneoka, M., Takahashi, K., Ikeda, Y., Imai, T., Kariya, T., Mitsunaka, Y., 1998, Development of high power gyrotron with diamond window. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 363-364, and private communications.

  609. Sakamoto, K., Kasugai, A., Takahashi, K., Tsuenoka, M., Ikeda, Yu., Ikeda, Yo., Imai, T., Kariya,T., Mitsunaka, Y., 1999, Status of high power gyrotron development for fusion application in JAERI. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TU-A1.

  610. Fujii, T., Imai, T., 1999, Development of ECRF components and system for ITER and JT-60 U tokamak. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 615-628.

    Google Scholar 

  611. Sakamoto, K., Kasugai, A., Shoyama, H., Hayashi, K., Takahashi, K., Tsuneoka, M., Ikeda, Yu., Ikeda, Yo., Kajiwara, K., Moriyama, S., Seki, M., Fujii, T., Kariya, T., Mitsunaka, Y., Imai, T., 2000, Development of 100 GHz band gyrotrons and its application for JT-60 U and ITER. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 11-12.

  612. Kajiwara, K., Ikeda, Y., Sakamoto, K., Kasugai, A., Seki, M., Moriyama, S., Takahashi, K., Imai, T., Mitsunaka, Y., Fujii, T., 2003, High power operation of 110 GHz gyrotron at 1.2 MW on the JT-60 ECRF system. Fusion Eng. and Design, 65, 493-499.

    Article  Google Scholar 

  613. Kasugai, A., Sakamoto, K., Takahashi, K., Kajiwara, K., Shoyama, H., Ikeda, Yu., Tsuneoka, M., Ikeda, Y., Fujii, T., Kariya, T., Mitsunaka, Y., Imai, T., 2001, 1 MW and long pulse operation of Gaussian beam output gyrotron with CVD diamond window for fusion devices. Fusion Engineering and Design, 53, 399-406.

    Article  Google Scholar 

  614. Sakamoto, K., Kasugai, A., Ikeda, Y., Hayashi, K., Takahashi, K., Tsuneoka, M., Kariya, T., Mitsunaka, Y., Imai, T., 2002, Development of 170 GHz and 110 GHz gyrotron for fusion application. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 336-337, and private communications, 2002.

  615. Sakamoto, K., 2003, Development of gyrotron and application to fusion research. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 11-12.

    Google Scholar 

  616. Sakamoto, K., Kasugai, A., Ikeda, Y., Hayashi, K., Takahashi, K., Moriyama, S., Seki, M., Kariya, T., Mitsunaka, Y., Fujii, T., Imai, T., 2003, Development of 170 and 110 GHz gyrotrons for fusion devices. Nucl. Fusion, 43, 729-737.

    Article  Google Scholar 

  617. Fujii, T., Seki, M., Moriyama, S., Terakado, M., Shinozaki, S., Hiranai, S., Shimono, S., Hasegawa, K., Yokokura, K., and the JT-60 team, 2005, Operational progress of the 110 GHz-4 MW ECRF heating system in JT-60 U. J. of Physics: Conf. Series, 25, 45-50.

    Google Scholar 

  618. Moriyama, S., Kobayashi, T., Isayama, A., and the JT-60 RF heating group, 2009, Development of linear motion antenna and 110 GHz gyrotron for 7 MW electron cyclotron range of frequency system in JT-60SA tokamak, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, M5E47.0442.

  619. Kobayashi, T., Moriyama, S., Seki, M., Sawahata, M., Terakado, M., Fujii, T., 2008, Achievement of 1.5 MW, 1 s oscillation by the JT-60 U gyrotron, Plasma and Fusion Research: Rapid Communications, 3, 014-1 – 014-3.

  620. Kobayashi, T., Terakado, M., Sato, F., Yokokura, K., Shimono, Hasegawa, K., Sawahata, M., Suzuki, S., Hiranai, S., Igarashi, K., Wada, K., Suzuki, T., Kajiwara, K., Kasugai, A., Sakamoto, K., Isayama, A., Motsunaga, G., Moriyama, S., 2009, Development of high power gyrotron and power modulation technique using the JT-60 U ECRF system, Plasma and Fusion Research: Regular Articles, 4, 037-1 – 037-10.

  621. Kobayashi, T., Isayama, K., Yokokura, K., Shimono, M., Hasegawa, K., Sawahata, M., Suzuki, S., Terakado, M., Hiranai, S., Sato, F., Wada, K., Hinata, J., Sato, Y., Ohzeki, M., Takahashi, K., Kajiwara, K., Oda, Y., Kasugai, A., Sakamoto, K., Hoshino, K., Moriyama, S., 2011, Progress of high-power and long-pulse ECRF system development in JT-60, Nuclear Fusion, 51, 103037 (10 pp).

    Article  Google Scholar 

  622. Sakamoto, K., Kajiwara, K., Oda, Y., Takahashi, K., Hayashi, K., 2011, Progress of gyrotron development in JAEA, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 35-36.

  623. Sakamoto, K., Kajiwara, K., Oda, Y., Takahashi, K., Hayashi, K., Kobayashi, N., 2011, Development of high power long pulse gyrotron in JAEA, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), Houston, TX, USA, W4A.5.

  624. Kobayashi, T., Isayama, A., Sawahata, M., Suzuki, S., Terakado, M., Hiranai, S., Wada, K., Sato, Y., Hinata, J., Yokokura, K., Hoshino, K., Kajiwara, K., Sakamoto, K., Moriyama, S., 2012, Dual frequency gyrotron development for JT-60SA, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Mon-A-3-5.

  625. Kobayashi, T., Sawahata, M., Terakado, M., Hiranai, S., Wada, K., Sato, Y., Hinata, J., Yokokura, K., Hoshino,K., Kajiwara, K., Oda, Y., Takahashi, K., Ikeda, R., Moriyama, S., Sakamoto, K., 2013, Long pulse operation of a dual frequency gyrotron for JT-60SA. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Tu1-3.

  626. Kobayashi, T., Moriyama, S., Isayama, A., Sawahata, M., Terakado, M., Hiranai, S., Wada, K., Sato, Y., Hinata, J., Yokokura, K., Hoshino, K., Sakamaoto, K., 2015, Development of a dual frequency (110/138 GHz) gyrotron for JT-60SA and its extension to an oscillation at 82 GHz. EPJ Web of Conferences, 87, 04008 (5 pp).

    Article  Google Scholar 

  627. Kobayashi, T., Moriyama, S., Yokokura, K., Sawahata, M., Terakado, M., Hiranai, S., Wada, K., Sato, Y., Hinata, J., Hoshino, K., Isamaya, A., Oda, Y., Ikeda, R., Takahashi, K., Sakamoto, K., 2015, Gyrotron development for high-power long-pulse electron cyclotron heating and current drive at two frequencies in JT-60SA and its extension toward operation at three frequencies. Nucl. Fusion, 55, 063008 (8 pp).

    Article  Google Scholar 

  628. Kobayashi, T., Sawahata, M., Terakado, M., Hiranai, S.,Ikeda, R., Oda, Y., Wada, K., Hinata, J., Yokokura, K., Hoshino, K., Takahashi, K., Isayama, A., Moriyama, S., Sakamoto, K., 2015, Progress and status of the gyrotron development for the JT-60SA ECH/CD system. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, T1E-1.

  629. Kobayashi, T., Ikeda, R., Oda, Y., Takahashi, K., Shidara, H., Sawahata, M., Terakado, M., Hiranai, S., Sato, F., Wada, K., Hinata, J., Yokokura, K., Hoshino, K., Moriyama, S., 2016, Progress and developments of high-power, long-pulse and multi-frequency ECH/CD system for JT-60SA. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, HSP.21.27.

  630. Shimozuma, T., Kikunaga, T., Asano, H., Yasojima, Y., Miyamoto, K., Tsukamoto, T., 1993, A 120 GHz high-power whispering-gallery mode gyrotron. Int. J. Electronics, 74, 137-151.

    Article  Google Scholar 

  631. Asano, H., Kikunagu, T., Shimozuma, T., Yasojima, Y., Tsukamoto, T., 1994, Experimental results of a 1 Megawatt gyrotron. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 59-60.

    Google Scholar 

  632. Giguet, E., Dubrovin, A., Krieg, J.M., Thouvenin, Ph., Tran, C., Garin, P., Pain, M., Alberti, S., Tran, M.Q., Whaley, D.R., Borie, E., Braz, O., Möbius, A., Piosczyk, B., Thumm, M., Wien, A., 1995, Operation of a 118 GHz - 0.5 MW gyrotron with cryogenic window: design and long pulse experiments. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 339-340.

    Google Scholar 

  633. Alberti, S., Braz, O., Garin, P., Giguet, E., Pain, M., Thouvenin, P.H., Thumm, M., Tran, C., Tran, M.Q., 1996, Long pulse operation of a 0.5 MW - 118 GHz gyrotron with cryogenic window. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, AF1.

  634. Pain, M. Garin, P., Tran, M.Q., Alberti, S., Thumm, M., Braz, O., Giguet, E., Thouvenin, P., Tran, C., 1996, Status of the 118 GHz - quasi-CW gyrotron of the Tore Supra and TCV tokamaks. Fusion Technology, 1996, eds., C. Varandas, F. Serra. Elsevier Science Publishers B.V., 1997, 533-536.

    Google Scholar 

  635. Alberti, S., Arnold, A., Borie, E., Dammertz, G., Erckmann, V., Garin, P., Giguet, E., Illy, S., Le Cloarec, G., Le Goff, Y., Magne, R., Michel, G., Piosczyk, B., Thumm, M., Tran, C., Tran, M.Q., Wagner, D., 2001, European high-power CW gyrotron development for ECRH systems. Fusion Engineering and Design, 53, 387-397.

    Article  Google Scholar 

  636. Darbos, C., Magne, R., Alberti, S., Barbuti, A., Berger-By, G., Bouquey, F., Cara, P., Clary, J., Courtois, L., Dumont, R., Giguet, E., Gil, D., Giruzzi, G., Jung, M., Le Goff, Y., Legrand, F., Lennholm, M., Liévin, C., Peysson, Y., Roux, D., Thumm, M., Wagner, T., Tran, M.Q., Zou, X., 2001, The 118 GHz ECRH experiment on Tore Supra. Fusion Eng. and Design, 56-57, 605-609.

    Article  Google Scholar 

  637. Magne, R., Alberti, S., Barbuti, A., Bouquey, F., Clary, J., Darbos, C., Giguet, E., Hogge, J.Ph., Jung, M., Le Goff, Y., Lennholm, M., Liévin, Ch., Portafaix, Ch., Roux, D., Saoutic, B., Thumm, M., 2001, Very long pulse testing of the TH 1506 B 118 GHz gyrotron. Proc. 14th Top. Conf. on Radio Frequency Power in Plasmas, Oxnard, California, AIP Conference Proceedings, Vol. 595, 477-481.

    Article  Google Scholar 

  638. Magne, R., Bouquey, F., Clary, J., Darbos, C., Jung, M., Lambert, R., Lennholm, M., Roux, D., Alberti, A., Hogge, J.P., Bariou, D., Legrand, F., Liévin, C., Arnold, A., Thumm, M., 2004, Improvement of the gyrotron TH 1506B for tore supra. 5th IEEE Int. Vacuum Electronics Conf. (IVEC 2004), Monterey, CA, USA, 32-33.

  639. Darbos, C., Alberti, S., Arnold, A., Bariou, D., Bouquey, F., Clary, J., Hogge, J.P., Lennholm, M., Liévin, C., Magne, R., Thumm, M., 2004, New design of the gyrotron used for ECRH experiments on Tore Supra. Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating (EC13), ed. A. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2005, 409-414.

    Google Scholar 

  640. Darbos, C., Arnold, A., Prinz, H.O., Thumm, M., Bouquey, F., Hogge, H.P., Lambert, R., Liévin, C., Magne, R., Traisne, E., 2007, Upgrade of the TH1506B 118 GHz gyrotron using modelling tools, Proc. 17th Topical Conf. on Radio Frequency Power in Plasmas, Clearwater, Florida, USA, AIP Conf. Proc., Vol. 933, 425-428.

  641. Prinz, H.O., Arnold, A., Dammertz, G., Thumm, M., 2007, Analysis of a TE22,6 118-GHz quasi-optical mode converter, IEEE Trans. on Microwave Theory and Techniques, 55, 1697-1703.

    Article  Google Scholar 

  642. Darbos, C., Magne, R., Arnold, A., Prinz, H.O., Thumm, M., Bouguey, F., Hogge, J.P., Lambert, R., Lennholm, M., Liévin, C., Traisnel, E., 2009, The 118-GHz electron cyclotron heating system on Tore Supra, Fusion Science and Technology, 56, 1205-1218.

    Article  Google Scholar 

  643. Liu, B., Feng, J., Zhang, Ya., Zhang, Yi., Li, Z., Zeng, X., An, K., 2018, Experiments on a 140 GHz TE22,6-mode gyrotron. Proc. 19th Int. Vacuum Electronics Conference (IVEC 2018), Monterey, CA, USA, P7.12.

  644. Blank, M., Felch, K., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Jory, H., 2003, Development of a 140 GHz, 1 MW, long-pulse gyrotron oscillator. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 123-124.

    Google Scholar 

  645. Jory, H., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Felch, K., 2003, Test results for a 140 GHz, 1 MW gyrotron. Proc. 6th Workshop of High Energy Density and High Power RF, Berkeley Springs, West Virginia, 224-233.

  646. Blank, M., Felch, K., Borchard, P., Cahalan, P., Cauffman, S.R., Chu, T.S., Jory, H., 2004, Demonstration of a high-power long-pulse 140-GHz gyrotron oscillator. IEEE Trans. on Plasma Science, 32, 867-876.

    Article  Google Scholar 

  647. Felch, K., Blank, M., Borchard, P., Cahalan, P., Cauffman, S., Chu, T.S., Jory, H., 2005, Recent ITER-relevant gyrotron tests. Journal of Physics: Conference Series, 25, 13-23.

    Google Scholar 

  648. Blank, M., Borchard, P., Cauffman, S., Felch, K., 2015, Development and demonstration of a 900 kW, 140 GHz gyrotron. 16th IEEE International Conference on Vacuum Electronics (IVEC 2015), Beijing, P.R. China, S23.3.

  649. Cauffman, S., Blank, M., Borchard, P., Felch, K., 2015, Design and testing of a 900 kW, 140 GHz gyrotron. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, M1E-5.

  650. Hu, L., Ma, G., Sun, D., Zhuo, T., Chen, H., Meng, F., 2018, Design and experiment of a 140 GHz 50 kW gyrotron. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, Th-A2-4-3.

  651. Borie, E., Gantenbein, G., Jödicke, B., Dammertz, G., Dumbrajs, O., Geist, T., Hochschild, G., Kuntze, M., Nickel, H.-U., Piosczyk, B., Thumm, M., 1992, Mode competition using TE03 gyrotron cavities. Int. J. Electronics, 72, 687-720.

    Article  Google Scholar 

  652. Dammertz, G., Haubrich, G., Hochschild, G., Jödicke, B., Kitlinski, M., Kuntze, M., Möbius, A., Piosczyk, B., Stickel, H., 1988, First experimental results of the KfK 150 GHz gyrotron. Int. J. Electronics, 64, 29-36.

    Article  Google Scholar 

  653. Gantenbein, G., Borie, E., Möbius, A., Piosczyk, B., Thumm, M., 1991, Design of a high-power 140 GHz gyrotron oscillator operating in an asymmetric volume mode at KfK. Conf. Digest 16th Int. Conf. on Infrared and Milli. Waves, Lausanne, Proc., SPIE 1576, 264-265.

    Google Scholar 

  654. Piosczyk, B., Kuntze, M., Borie, E., Dammertz, G., Dumbrajs, O., Gantenbein, G., Möbius, A., Nickel H.-U., Thumm, M., 1992, Development of high power 140 GHz gyrotrons at KfK for applications in fusion. Fusion Technology 1992, eds. C. Ferro, M. Gasparotto, H. Knoepfel. Elsevier Science Publishers B.V., 1993, 618-622.

    Google Scholar 

  655. Gantenbein, G., Borie, E., Dumbrajs, O., Thumm, M., 1995, Design of a high order volume mode cavity for a 1 MW/140 GHz gyrotron. Int. J. Electronics, 78, 771-782.

    Article  Google Scholar 

  656. Dammertz, G., Braz, O., Iatrou, C.T., Kuntze, M., Möbius, A., Pioszyk, B., Thumm, M., 1996, Long-pulse operation of a 0.5 MW TE10,4 gyrotron at 140 GHz. IEEE Trans. on Plasma Science, 24, 570-578.

    Article  Google Scholar 

  657. Piosczyk, B., Iatrou, C.T., Dammertz, G., Thumm, M., 1996, Single-stage depressed collectors for gyrotrons. IEEE Trans. on Plasma Science, 24, 579-585.

    Article  Google Scholar 

  658. Dammertz, G., Braz, O., Kuntze, M., Piosczyk, B., Thumm, M., 1996, Design criteria for step tunable long-pulse gyrotrons. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 660-666.

    Google Scholar 

  659. Dammertz, G., Braz, O., Kuntze, M., Piosczyk, B., Thumm, M., 1997, Influence of window reflections on gyrotron operation. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 150-151.

    Google Scholar 

  660. Kuntze, M., Borie, E., Dammertz, G., Piosczyk, B., Thumm, M., 1999, 140 GHz gyrotron with 2.1 output power. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, W-A6.

  661. Dammertz, G., Borie, E., Iatrou, C.T., Kuntze, M., Piosczyk, B., Thumm, M. K, 2000, 140-GHz gyrotron with multimegawatt output power. IEEE Trans. on Plasma Science, 28, 561-566.

  662. Piosczyk, B., Borie, E., Braz, O., Dammertz, G., Iatrou, C.T., Illy, S., Kern, S., Kuntze, M., Kartikeyan, M.V., Michel, G., Möbius, A., Thumm, M., 1996, Advanced high power gyrotrons for ECW application. Fusion Technology 1996, eds., C. Varandas, F. Serra. Elsevier Science Publishers B.V., 1997, 545-548.

    Google Scholar 

  663. Kuntze, M., Borie, E., Braz, O., Dammertz, G., Illy, S., Michel, G., Möbius, A., Piosczyk, B., Thumm, M., 1998, Advanced high power gyrotrons for ECRH applications. Proc. 20th Int. Symp. on Fusion Technology (SOFT), Marseille, France, Vol. 1, 489-492.

    Google Scholar 

  664. Piosczyk, B., Arnold, A., Borie, E., Dammertz, G., Drumm, O., Dumbrajs, O., Illy, S., Kuntze, M., Koppenburg, K., Schmid, M., Thumm, M., 2001, Progress in the development of advanced high power gyrotrons. Proc. 2nd IEEE Int. Vacuum Electronics Conf. (IVEC 2001), Noordwijk, Netherlands, 327-330.

  665. Piosczyk, B., Arnold, A., Borie, E., Dammertz, G., Drumm, O., Dumbrajs, O., Illy, S., Kuntze, M., Koppenburg, K., Schmid, M., Thumm, M., 2001, Advanced high power gyrotrons for fusion applications. Proc. 9th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 165, 149-152.

    Google Scholar 

  666. Piosczyk, B., Arnold, A., Borie, E., Dammertz, G., Drumm, O., Dumbrajs, O., Illy, S., Kuntze, M., Koppenburg, K., Thumm, M., 2001, Development of advanced high power gyrotrons at Forschungszentrum Karlsruhe. Frequenz, 55, 242-246.

    Article  Google Scholar 

  667. Kuntze, M., Alberti, S., Dammertz, G., Giguet, E., Illy, S., Heidinger, R., Koppenburg, K., LeCloarec, G., LeGoff, Y., Leonhardt, W., Piosczyk, B., Schmid, M., Thumm, M.K., Tran, M.Q., 2003, Advanced high power gyrotrons. IEEE Trans. on Plasma Science, 31, 25-31.

    Article  Google Scholar 

  668. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H., LeCloarec, G., Legrand, F., LeGoff, Y., Leonhardt, W., Lievin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Rzesnicki, T., Schmid, M., Thumm, M., Tran, M.Q., 2004, Development of multimegawatt gyrotrons for fusion plasma heating and current drive. 5th IEEE Int. Vacuum Elect. Conf. (IVEC 2004), Monterey, CA, USA, 28-29.

  669. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Förster, W., Gantenbein, G., Garin, P., Giguet, E., Illy, S., Kasparek, W., Laqua, H., Le Cloarec, G., Le Goff, Y., Leonhardt, W., Magne, R., Michel, G., Müller, G., Kuntze, M., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.Q., 2001, 1 MW, 140 GHz, CW gyrotron for Wendelstein 7-X. Proc. 9th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 165, 143-147.

    Google Scholar 

  670. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Hogge, J.-P., Illy, S., Kasparek, W., Koppenburg, K., Laqua, H., Le Cloarec, G., Le Goff, Y., Leonhardt, W., Liévin, Ch., Magne, R., Michel, G., Müller, G., Neffe, G., Kuntze, M., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.Q., 2001, Development of a 140 GHz, 1 MW, continuous wave gyrotron for the W7-X stellarator. Frequenz, 55, 270-275.

    Article  Google Scholar 

  671. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H.P., LeCloarec, G., LeGoff, Y., Leonhardt, W., Lievin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Schwörer, K., Thumm, M.K., Tran, M.Q., 2002, Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator. IEEE Trans. on Plasma Science, 30, 808-818.

    Article  Google Scholar 

  672. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H., LeCloarec, G., Legrand, F., LeGoff, Y., Leonhardt, W., Lievin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.P., 2002, 140 GHz, 1 MW, CW gyrotron for fusion plasma heating. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 330-331.

  673. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H.P., LeCloarec, G., Legrand, F., Leonhardt, W., Lievin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Schwörer, K., Thumm, M., Tran, M.Q., 2002, Progress of the 1 MW, 140 GHz, CW gyrotron for W7-X. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 3-4.

    Chapter  Google Scholar 

  674. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H.P., LeCloarec, G., LeGoff, Y., Leonhardt, W., Lievin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.Q., 2002, Status of the 1 MW, 140 GHz gyrotron for W7-X. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 16-28.

    Google Scholar 

  675. Dammertz, G., Alberti, S., Fasel, D., Giguet, E., Koppenburg, K., Kuntze, M., Legrand, F., Leonhardt, W., Lievin, C., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Sterk, A., Thumm, M., Tran, M.Q., Verhoeven, A.G.A., 2003, Power modulation capabilities of the 140 GHz/1 MW gyrotron for the stellarator Wendelstein 7-X. Fusion Engineering and Design, 66-68, 497-502.

    Article  Google Scholar 

  676. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H., LeCloarec, G., Legrand, F., LeGoff, Y., Leonhardt, W., Lievin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.Q., 2003, Progress in the development of a 1-MW, CW gyrotron at 140 GHz for fusion plasma heating. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 34-35.

  677. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H.P., LeCloarec, G., Legrand, F., Leonhardt, W., Liévin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Schwoerer, K., Thumm, M., Tran, M.Q., 2003, Prototype of a 1 MW, CW gyrotron at 140 GHz for Wendelstein 7-X. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 121-122.

    Google Scholar 

  678. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H.P., LeCloare, G., Legrand, F., Leonhardt, W., Liévin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Schwörer, K., Thumm, M., Tran, M.Q., 2004, The 140-GHz 1-MW CW gyrotron for the Stellarator W7-X, Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 35-39.

    Google Scholar 

  679. Dammertz, G., Alberti, S., Arnold, A., Brand, P., Braune, H., Borie, E., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.-P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H., LeCloarec, G., Legrand, F., Leonhardt, W., Liévin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Schwörer, K., Thumm, M., Tran, M.Q., 2004, Progress in the development of 1 MW CW gyrotrons for the stellarator W7-X. Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating (EC13), ed. A. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2005, 371-376.

    Google Scholar 

  680. Dammertz, G., Alberti, S., Arnold, A., Borie, E., Brand, P., Braune, H., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Kuntze, M., Laqua, H., LeCloarec, G., Legrand, F., Leonhardt, W., Lievin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.Q., 2004, Status of the 1 MW, CW gyrotrons for the stellarator W7-X. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 113-114.

    Google Scholar 

  681. Dammertz, G., Alberti, S., Bariou, D., Brand, P., Braune, H., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Kasparek, W., Laqua, H.P., Liévin, C., Leonhardt, W., Michel, G., Müller, G., Neffe, G., Piosczyk, P., Schmid, M., Thumm, M., 2005, 140 GHz high-power gyrotron development for the stellarator W7-X. Fusion Eng. and Design, 74, 217-221.

    Article  Google Scholar 

  682. Dammertz, G., 2005, Development of a 1-MW, CW gyrotron at 140 GHz for electron-cyclotron-resonance-heating in fusion plasma devices. Proc. 6th IEEE Int. Vacuum Electronics Conf. (IVEC 2005), Noordwijk, The Netherlands, 113.

  683. Dammertz, G., Alberti, S., Arnold, A., Bariou, D., Borie, E., Brand, P., Braune, H., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Laqua, H., Legrand, F., Leonhardt, W., Lievin, C., Michel, G., Müller, G., Neffe, G., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.Q., 2005, Experimental results on the 140 GHz, 1 MW, CW gyrotrons for the stellarator W7-X. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 235-236.

    Google Scholar 

  684. Dammertz, G., Alberti, S., Arnold, A., Bariou, D., Brand, P., Braune, H., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.-P., Illy, S., Jin, J., Kasparek, W., Koppenburg, K., Laqua, H.P., Legrand, F., Leonhardt, W., Lievin, C., Magne, R., Michel, G., Müller, G., Neffe, G., Piosczyk, P., Rzesnicki, T., Schmid, M., Thumm, M., Tran, M.Q., Yang, X., 2005, Development of multimegawatt gyrotrons for fusion plasma heating and current drive. IEEE Trans. on Electron Devices, 52, No. 5, 808-817.

    Google Scholar 

  685. Gantenbein, G., Dammertz, G., Alberti, S., Arnold, A., Erckmann, V., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Koppenburg, K., Laqua, H., Legrand, F., Leonhardt, W., Liévin, C., Michel, G., Neffe, G., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.Q., 2006, Status of the 1-MW, 140-GHz, CW gyrotron for W7-X. Proc. Int. Vacuum Electronics Conference and Int. Vacuum Electron Sources (IVEC/IVESC 2006), Monterey, California, USA, 533-534.

  686. Dammertz, G., Alberti, S., Arnold, A., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Laqua, H., Legrand, F., Leonhardt, W., Liévin, C., Michel, G., Neffe, G., Piosczyk, B., Schmid, M., Thumm, M., Tran, M.Q., 2006, Status of the series production of 1-MW, 140-GHz, CW gyrotrons for W7-X. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 21.

  687. Thumm, M., Alberti, S., Arnold, A., Dammertz, G., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.-P., Illy, S., Kasparek, W., Laqua, H.P., Lievin, C., Magne, R., Michel, G., Piosczyk, B., Schwörer, K., Tran, M.Q., Yang, X., 2005, Status of 1 MW, 140 GHz, CW gyrotron for W7-X. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 33-45.

    Google Scholar 

  688. Gantenbein, G., Dammertz, G., Erckmann, V., Illy, S., Kasparek, W., Lechte, C., Legrand, F., Lietaer, G., Liévin, C., Piosczyk, B., Schmid, M., Thumm, M., 2007, Experimental results on high-power gyrotrons for the stellarator W7-X. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves & 15th Int. Conf. on Terahertz Electr., Cardiff, UK,102-103.

  689. Braune, H., Brand, P., Dammertz, G., Erckmann, V., Gantenbein, G., Kasparek, W., Laqua, H.P., Lechte, C., Leonhardt, W., Mellein, D., Michel, G., Noke, F., Purps, F., Schlüter, K.-H., Schmid, M., Thumm, M., and the W7-X ECRH Teams at IPP, IPF and FZK, 2007, Extended operation of the 1 MW, CW gyrotrons for W7-X. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves & 15th Int. Conf. on Terahertz Electr., Cardiff, UK,104-105.

  690. Thumm, M., Alberti, A., Arnold, A., Brand, P., Braune, H., Dammertz, G., Erckmann, V., Gantenbein, G., Giguet, E., Heidinger, R., Hogge, J.P., Illy, S., Kasparek, W., Laqua, H.P., Legrand, F,. Leonhardt, W., Liévin, C., Michel, G., Neffe, G., Piosczyk, B., Schmid, M., Schwörer, K., Tran, M.Q., 2007, EU megawatt-class 140-GHz CW gyrotron, IEEE Trans. on Plasma Science, 35, 143-153.

    Article  Google Scholar 

  691. Schmid, M., Illy, S., Dammertz, G., Erckmann, V., Thumm, M., 2007, Transverse field collector sweep system for high power CW gyrotrons, Fus. Eng. and Design, 82, 744-750.

    Article  Google Scholar 

  692. Thumm, M., Brand, P., Braune, H., Dammertz, G., Erckmann, V., Gantenbein, G., Illy, S., Kasparek, W., Laqua, H.P., Lechte, C., Leonhardt, W., Michel, G., Neffe, G., Piosczyk, B., Schmid, M., Weissgerber, M., 2008, Progress in the 10-MW 140-GHz ECH system for the stellarator W7-X, IEEE Trans. on Plasma Science, 36, 341-355.

    Article  Google Scholar 

  693. Thumm, M., Braune, H., Dammertz, G., Erckmann, V., Gantenbein, G., Illy, S., Kern, S., Kasparek, W., Laqua, H.P., Lechte, C., Legrand, F., Leonhardt, W., Lievin, C., Michel, G., Piosczyk, B., Prinz, O., Schmid, M., 2008, 1 MW, 140 GHz series gyrotrons for the W7-X stellarator, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2009, Vol. 1, pp. 84-94.

  694. Braune, H., Erckmann, V., Illy, S., Laqua, H.P., Noke, F., Purps, F., Schmid, M., 2008, Advanced transverse field collectors sweeping for high power gyrotrons, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 1, pp. 149-153.

  695. Kern, S., Schlaich, A., Flamm, J., Gantenbein, G., Latsas, G., Rzesnicki, T., Samartsev, A., Thumm, M., Tigelis, I., 2009, Investigations on parasitic oscillations in megawatt gyrotrons, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, T4C01.0132.

  696. Gantenbein, G., Dammertz, G., Flamm, J., Illy, S., Kern, S., Latsas, G., Piosczyk, B., Rzesnicki, T., Samartsev, A., Schlaich, A., Thumm, M., Tigelis, I., 2010, Experimental investigations and analysis of parasitic RF oscillations in high-power gyrotrons, IEEE Trans. on Plasma Science, 38, 1168-1177.

    Article  Google Scholar 

  697. Schlaich, A., Flamm, J., Gantenbein, G., Kern S., Latsas, G., Rzesnicki, T., Samartsev, A., Thumm, M., Tigelis, I., 2010, Investigations on parasitic oscillations in megawatt gyrotrons, Proc. 11th IEEE Int. Vacuum Electronics Conf. (IVEC 2010), Monterey, USA, pp. 33-34.

  698. Gantenbein, G., Erckmann, V., Illy, S., Kern, S., Kasparek, W., Lechte, C., Leonhardt, W., Liévin, C., Samartsev, A., Schlaich, A., Schmid, M., Thumm, M., 2011, 140 GHz, 1 MW CW gyrotron development for fusion applications – Progress and recent results. J. of Infrared, Millimeter, and Terahertz Waves, 32, 320-328.

    Article  Google Scholar 

  699. Thumm, M., Gantenbein, G., Erckmann, V., Illy, S., Kern, S., Kasparek, W., Lechte, C., Leonhardt, W., Liévin, C., Samartsev, A., Schlaich, A., Schmid, M., 2011, 140 GHz, 1 MW, CW gyrotron development for the ECRH system of the stellarator Wendelstein7-X, Proc. 12th IEEE Int. Vacuum Electonic Conf. (IVEC 2011), Bangalore, India, pp. 105-106.

  700. Thumm, M., Braune, H., Dammertz, G., Gantenbein, G., Erckmann, V., Illy, S., Kern, S., Kasparek, W., Lechte, C., Leonhardt, W., Liévin, C., Michel, G., Noke, F., Purps, F., Samartsev, A., Schlaich, A., Schmid, M., Schulz, T., 2011, Recent progress on the 1 MW, 140 GHz, CW series gyrotrons for W7-X, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 45-46.

  701. Gantenbein, G., Braune, H., Dammertz, G., Erckmann, V., Illy, S., Kern, S., Kasparek, W., Lechte, C., Leonhardt, W., Lievin, C., Michel, G., Noke, F., Purps, F., Samartsev, A., Schlaich, A., Schmid, M., Thumm, M., 2011, Status of 1 MW, 140 GHz series gyrotrons for W7-X, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), Houston, TX, USA, W4A.1.

  702. Jelonnek, J., Braune, H., Dammertz, G., Erckmann, V., Flamm, J., Gantenbein, G., Hollmann, F., Jonitz, L., Kasparek, W., Kern, S., Laqua, H.P., Lechte, C., Légrand, F., Leonhardt, W., Lietaer, G., Michel, G., Noke, F., Purps, F., Samartsev, A., Schlaich, A., Schmid, M., Thumm, M., Uhren, P., 2012, Progress on 140 GHz, 1 MW, CW series gyrotrons for W7-X, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Thu-A-2-2.

  703. Schmid, M., Roy Choudhury, A., Dammertz, G., Erckmann, V., Gantenbein, G., Illy, S., Jelonnek, J., Kern, S., Legrand, F., Rzesnicki, T., Samartsev, A., Schlaich, A., Thumm, M., 2013, Recent achievements on tests of series gyrotrons for W7-X and planned extension at the KIT gyrotron test facility. Fusion Eng. and Design, 88, 945-949.

    Article  Google Scholar 

  704. Schlaich, A., Gantenbein, G., Jelonnek, J., Thumm, M., 2013, Transient millimeter-wave signal analysis with unambiguous RF spectrum reconstruction. IEEE Trans. on Microwave Theory and Techniques, 61, 4660-4666.

    Article  Google Scholar 

  705. Schlaich, A., Jelonnek, J., Thumm, M., 2013, Millimeter-wave time-domain spectrum analysis system with unambiguous RF spectrum reconstruction. 2013 International Microwave Symposium (IMS 2013), Seattle, WA, USA, WEPN-1.

  706. Schlaich, A., Gantenbein, G., Jelonnek, J., Thumm, M., 2013, Simulation of high power gyrotron operation during window arc. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo P1-41.

  707. Roy Choudhury, A., D’Andrea, D., Thumm, M., 2015, Study of dynamic after cavity interaction in gyrotrons – Part II: Influence of a nonuniform magnetic field. IEEE Trans. on Electron Devices, 62, No. 1, 192-199.

    Google Scholar 

  708. Cismondi, F., Albajar, F., Bonicelli, T., EGYC Team (KIT), 2014, Thales Team (TED): EU development program for the 1 MW gyrotron for ITER. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, T4_E-16.15.

  709. Albajar, F., G. Aiello, S. Alberti, F. Arnol, K. Avramidis, M. Bader, R. Batista, R. Bertizzolo, T. Bonicelli, F. Braunmueller, C. Brescan, A. Bruschi, B. van Burg, K. Camino, G. Carannante, V. Casarin, A. Castillo, F. Cauvard, C. Cavalieri, M. Cavinato, R. Chavan, J. Chelis, F. Cismondi, D. Combescure, C. Darbos, D. Farina, D. Fasel, L. Figini, M. Gagliardi, F. Gandini, G. Gantenbein, T. Gassmann, R. Gessner, T.P. Goodman, V. Gracia, G. Grossetti, C. Heemskerk, M. Henderson, V. Hermann, J.P. Hogge, S. Illy, Z. Ioannidis, J. Jelonnek, J. Jin, W. Kasparek, J. Koning, A.S. Krause, J.D. Landis, G. Latsas, F. Li, F. Mazzocchi, A. Meier, A. Moro, R. Nousiainen, D. Purohit, S. Nowak, T. Omori, J. van Oosterhout, J. Pacheco, I. Pagonakis, P. Platania, E. Poli, A.K. Preis, D. Ronden, Y. Rozier, T. Rzesnicki, G. Saibene, F. Sanchez, F. Sartori, O. Sauter, T. Scherer, C. Schlatter, S. Schreck, A. Serikov, U. Siravo, C. Sozzi, P. Spaeh, A. Spichiger, D. Strauss, K. Takahashi, M. Thumm, J. Tigelis, A. Vaccaro, J. Vomvoridis, M.Q. Tran, B. Weinhorst, 2015, Status of Europe’s contribution to the ITER EC system. EPJ Web of Conferences, 87, 04004 (6 pp).

    Article  Google Scholar 

  710. Pagonakis, I.Gr., Albajar, F., Alberti, S., Avramidis, K., Bonicelli, T., Braunmueller, F., Bruschi, A., Chelis, J., Cismondi, F., Gantenbein, G., Hermann, V., Hesch, K., Hogge, J.-P., Jelonnek, J., Jin, J., Illy, S., Ioannidis, Z.C., Kobarg, T., Latsas, G.P., Legrand, F., Lontano, M., Piosczyk, B., Rozier, Y., Rzesnicki, T., Samartsev, A., Schlatter, C., Thumm, M., Tigelis, I.G., Tran, M.Q., Tran, T.-M., Weggen, J., Vomvoridis, J.L., 2015, Status of the development of the EU 170GHz/1 MW/CW gyrotron. Fusion Eng. and Design, 96-97, 149-154.

    Article  Google Scholar 

  711. Rozier, Y., Albajar, F., Alberti, S., Avramidis, K.A., Bonicelli, T., Cismondi, F., Frigot, P.-E., Gantenbein, G., Hermann, V., Hogge, J.-P., Jelonnek, J., Jin, J., Legrand, F., Lietaer, G., Pagonakis, I.Gr., Rzesnicki, T., Thumm, M., 2016, Manufacturing and tests of the European 1 MW, 170 GHz CW gyrotron prototype for ITER. 17th IEEE International Vacuum Electronics Conference (IVEC 2016), April 19-21, 2016, Monterey, CA, USA, S8.1.

  712. Hogge, J.-P., Alberti, S., Braunmueller, F., Schlatter, C., Tran, M.Q., Avramidis, K., Gantenbein, G., Illy, S., Ioannidis, Z.C., Jelonnek, J., Jin, J., Kobarg, T., Losert, M., Pagonakis, I.G., Rzesnicki, T., Schmid, M., Thumm, M., Hermann, V., Rozier, Y., Chelis, J., Vomvoridis, J.L., Latsas, G.P., Tigelis, I.G., Zisis, A., Bin, W., Bruschi, A., Lontano, M., Kasparek, W., Lechte, C., Albajar, F., Bonicelli, T., P.-E. Frigot, P.-E., 2016, Status and experimental results of the European 1 MW, 170 GHz industrial CW prototype gyrotron for ITER. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, H3B.1.

  713. Ioannidis, Z.C., Rzesnicki, T., Albajar, F., Alberti, S., Avramidis, K.A., Bin, W., Bonicelli, T., Bruschi, A., Chelis, I., Frigot, P.-E., Gantenbein, G., Hermann, V., Hogge, J.-P., Illy, S., Jin, J. Jelonnek, J., Kasparek, W., Latsas, G., Lechte, C., Legrand, F., Kobarg, T., Pagonakis, I.Gr., Rozier, Y., Schlatter, C., Schmid, M., Tigelis, I.G., Thumm, M., Tran, M.Q., Zein, A., Zisis, A., 2017, CW Experiments with the EU 1-MW, 170-GHz industrial prototype gyrotron for ITER at KIT. IEEE Trans. on Electron Devices, 64, No. 9, 3885-3892.

    Google Scholar 

  714. Gantenbein, G., Albajar, F., Alberti, S., Avramidis, K., Bin, W., Bonicelli, T., Bruschi, A., Chelis, J., Fanale, F., Legrand, F., Hermann, V., Hogge, J.-P., Illy, S., Ioannidis, Z.C., Jin, J., Jelonnek, J., Kasparek, W., Latsas, G.P., Lechte, C., Lontano, M., Pagonakis, I.G., Rzesnicki, T., Schlatter, C., Schmid, M., Tigelis, I.G., Thumm, M., Tran, M.Q., Vomvoridis, J.L., Zein, A. Zisis, A., 2017, Experimental results of the EU ITER prototype gyrotrons. EPJ Web of Conferences, 157, 03016 (4 pp).

    Article  Google Scholar 

  715. Rzesnicki, T., Albajar, F., Alberti, S., Avramidis, K., Bin, W., Bonicelli, T., Braunmueller, F., Bruschi, A., Chelis, J., Frigot, P.-E., Gantenbein, G., Hermann, V., Hogge, J.-P., Illy, S., Ioannidis, Z.C., Jelonnek, J., Jin, J., Kasparek, W., Latsas, G.P., Lechte, C., Lontano, M., Kobarg, T., Pagonakis, I.G., Rozier, Y., Schlatter, C., Schmid, M., Tigelis, I.G., Thumm, M., Tran, M.Q., Vomvoridis, J.L., Zisis, A., 2017, Experimental verification of the European 1 MW, 170 GHz industrial CW prototype gyrotron for ITER. Fusion Engineering and Design, 123, 490-494.

    Article  Google Scholar 

  716. Ioannidis, Z.C., Rzesnicki, T., Avramidis, K., Gantenbein, G., Illy, S., Jin, J., Kobarg, T., Pagonakis, I.Gr., Schmid, M., Thumm, M., Jelonnek, J., Hermann, V., Rozier, Y., Legrand, F., Alberti, S., Braunmueller, F., Hogge, J.-P., Schlatter, C., Genoud, J., Tran, M.Q., Kasparek, W., Lechte, C., Vomvoridis, J.L., Chelis, J., Latsas, G.P., Zisis, A., Tigelis, I.G., Bruschi, A., Bin, W., Lantano, M., Albajar, A., Bonicelli, T., Frigot, P.-E.: First cw experiments with the EU ITER 1 MW, 170 GHz industrial prototype gyrotron. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, GIII-1.

  717. Rzesnicki, T., Ioannidis, Z.C., Avramidis, K., Gantenbein, G., Illy, S., Jelonnek, J., Jin, J., Kobarg, T., Pagonakis, I.Gr., Schmid, M., Thumm, M., EGYC Team, 2017, Experimental study on further performance optimization of the European 1 MW, 170 GHz gyrotron prototype for ITER. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, WC2.5.

  718. Myasnikov, V.E., Cayer, A.P., Bogdanov, S.D., Kurbatov, V.I., 1991, Soviet industrial gyrotrons. Conf. Digest 16th Int. Conf. on Infrared and Millimeter Waves, Lausanne, SPIE 1576, 127-128.

    Google Scholar 

  719. Flyagin, V.A., Goldenberg, A.L., Zapevalov, V.E., 1993, State of the art of gyrotron investigation in Russia. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 581-584.

    Google Scholar 

  720. Denisov, G.G., Flyagin, V.A., Goldenberg, A.L., Khizhnyak, V.I., Kuftin, A.N., Malygin, V.I., Pavelyev, A.B., Pylin, A.V., Zapevalov, V.E., 1991, Investigation of gyrotrons in IAP. Conf. Digest 16th Int. Conf. on Infrared and Millimeter Waves, Lausanne, SPIE 1576, 632-635.

    Google Scholar 

  721. Agapova, M.V., Axenova, L.A., Alikaev, V.V., Cayer, A.P., Denisov, G.G., Flyagin, V.A., Fix, A.Sh., Iljin, V.I., Ilyin, V.N., Khmara, V.A., Kostyna, A.N., Kuftin, A.N., Mjasnikov, V.E., Popov, L.G., Zapevalov, V.E., 1994, Long-pulsed 140 GHz/0.5 MW gyrotron: problems and results. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 79-80.

    Google Scholar 

  722. Mjasnikov, V.E., Agapova, M.V., Alikaev, V.V., Borshchegovsky, A.S., Denisov, G.G., Fljagin, V.A., Fix, A.Sh., Ilyin, V.I., Ilyin, V.N., Keyer, A.P., Khmara, V.A., Khmara, D.V., Kostyna, A.N., Nichiporenko, V.O., Popov, L.G., Zapevalov, V.E., 1996, Megawatt power long-pulse 140 GHz gyrotron. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, ATh1.

  723. Zapevalov, V.E., Alikaev, V.V., Denisov, G.G., Flyagin, V.A., Fix, A.Sh., Kuftin, A.N., Kurbatov, V.I., Myasnikov, V.E., 1997, Development of 1 MW ouptut power level gyrotron for ITER. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 108-109.

    Google Scholar 

  724. Denisov, G.G., Flyagin, V.A., Kuftin, A.N., Lygin, V.K., Moiseev, M.A., Zapevalov, V.E., 1996, Development of the prototype 170 GHz/ 1 MW gyrotron for ITER at IAP. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, N. Novgorod, 1997, Vol.2, 717-722.

    Google Scholar 

  725. Myasnikov, V.E., Agapova, M.V., Kostyna, A.N., Popov, L.G., Denisov, G.G., Bogdashov, A.A., Zapevalov, V.E., 1998, Development of 140 GHz/ 1 MW gyrotron with a dual RF beam output. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 375-376.

    Google Scholar 

  726. Myasnikov, V.E., Agapova, M.V., Ilyin, V.N., Khmara, D.V., Kostyna, A.N., Nichiporenko, V.O., Popov, L.G., Zakirov, F.G., Shamanova, N.A., Alikaev, V.V., Ilyin, V.I., Denisov, G.G., Zapevalov, V.E., Bogdashov, A.A., Kuftin, A.N., Lygin, V.K., Litvak, A.G., Chirkov, A.V., Moiseev, M.A., 2001, Status of the 140 GHz / 800 kW / 3-10 s gyrotron for TEXTOR tokamak. Proc. 2nd IEEE Int. Vacuum Electronics Conf. (IVEC 2001), Noordwijk, Netherlands, 321-323.

  727. Myasnikov, V.E., Usachev, S.V., Agapova, M.V., Alikaev, V.V., Denisov, G.G., Fix, A.Sh., Flyagin, V.A., Gnedenkov, A. Ph., Ilyin, V.I., Kuftin, A.N., Popov, L.G., Zapevalov, V.E., 1998, Long-pulse operation of 170 GHz/1 MW gyrotron for ITER. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 24-25.

    Google Scholar 

  728. Myasnikov, V.E., Litvak, A.G., Usachev, S.V., Popov, L.G., Agapova, M.V., Alikaev, V.V., Denisov, G.G., Gnedenkov, A. Ph., Ilyin, V.I., Ilyin, V.N., Khmara, D.V., Kostyna, A.N., Nichiporenko, V.O., Zapevalov, V.E., 1999, Development of 170 GHz gyrotron with depressed collector and diamond window for ITER. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TU-A8.

  729. Zapevalov, V.E., Denisov, G.G., Flyagin, V.A., Fix, A.Sh., Kuftin, A.N., Litvak, A.G., Agapova, M.V., Iljin, V.N., Khmara, V.A., Myasnikov, V.E., Nichiporenko, V.O., Popov, L.G., Usachev, S.V., Alikaev, V.V., Iljin, V.I., 2001, Development of 170 GHz/1 MW Russian gyrotron for ITER. Fusion Engineering and Design, 53, 377-385.

    Article  Google Scholar 

  730. Myasnikov, V.E., Litvak, A.G., Usachev, S.V., Popov, L.G., Agapova, M.V., Alikaev, V.V., Denisov, G.G., Gnedenkov, A.Ph., Ilyin, V.I., Ilyin, V.N., Khmara, D.V., Kostyna, A.N., Nichiporenko, V.O., Zapevalov, V.E., 2002, Development of 170 GHz gyrotron for ITER. Proc. 3rd IEEE Int. Vacuum Electr. Conf. (IVEC 2002), Monterey, USA, 334-335.

  731. Denisov, G.G., 2002, Megawatt gyrotrons for fusion research. State of the art and trends of development. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 29-45.

    Google Scholar 

  732. Litvak, A.G., Denisov, G.G., 2003, Gyrotron oscillator for fusion reactor. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 352-353.

  733. Denisov, G.G., Bogdashov, A.A., Belousov, V.I., Chirkov, A.V., Kalynova, G.I., Kuftin, A.N., Litvak, A.G., Lygin, V.K., Malygin, V.I., Moiseev, M.A., Zapevalov, V.E., Kurbatov, V.I., Malygin, S.A., Orlov, V.B., Tai, E.M., Ilyin, V.N., Popov, L.G., Myasnikov, V.E., Sokolov, E.V., Apagova, M.V., Usachev, S.V., Soluyanova, E.V., Gnedenkov, A.F., Khmara, D.V., Kostyna, A.N., Nichiporenko, V.O., Manuilov, V.N., Ilyin, V.I., 2003, New results in development of MW output power gyrotrons for fusion systems. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 28-29.

  734. Zapevalov, V.E., Belousov, V.I., Bogdashov, A.A., Chirkov, A.V., Denisov, G.G., Kuftin, A.N., Litvak, A.G., Lygin, V.K., Malygin, V.I., Moiseev, M.A., Agapova, M.V., Gnedenkov, A.Ph., Iljin, V.N., Khmara, D.V., Kostyna, A.N., Myasnikov, V.E., Nichiporenko, V.O., Popov, L.G., Usachev, S.V., Roschin, Yu.V., Iljin, V.I., 2003, Evolution of 170 GHz/1 MW Russian gyrotron for ITER. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 165-166.

    Google Scholar 

  735. Usachev, S.V., Litvak, A.G., Myasnikov, V.E., Popov, L.G., Agapova, M.V., Nichiporenko, V.O., Denisov, G.G., Bogdashov, A.A., Gnedenkov, A.Ph., Ilyin, V.I., Ilyin, V.N., Khmara, D.V., Kostyna, A.N., Kuftin, A.N., Kurbatov, V.I., Lygin, V.K., Moiseev, M.A., Malygin, V.I., Zapevalov, V.E., Tai, E.M., 2004, Development of 170 GHz/ 1 MW/CW gyrotron for ITER. Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating (EC13), ed. A. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2005, 398-402.

    Google Scholar 

  736. Litvak, A.G., Myasnikov, V.E., Usachev, S.V., Popov, L.G., Agapova, M.V., Nichiporenko, V.O., Denisov, G.G., Bogdashov, A.A., Gnedenkov, A.Ph., Ilyin, V.I., Ilyin, V.N., Khmara, D.V., Kostyna, A.N., Kuftin, A.N., Lygin, V.K., Moiseev, M.A., Malygin, V.I., Solujanova, E.A., Zapevalov, V.E., Tai, E.M., 2004, Development of 170 GHz/ 1 MW/50%/CW gyrotron for ITER. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 111-112.

    Google Scholar 

  737. Denisov, G.G., Litvak, A.G., Myasnikov, V.E., Tai, E.M., Ilin, V.I., Zapevalov, V.E., 2005, Megawatt-power gyrotrons for fusion. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 62-75.

    Google Scholar 

  738. Agapova, M.V., Bogdashov, A.A., Chirkov, A.V., Denisov, G.G., Gnedenko, A.Ph., Ilyin, V.I., Ilyin, V.N., Khmara, D.V., Kostyna, A.N., Kuftin, A.N., Kurbatov, V.I., Litvak, A.G., Lygin, V.K., Malygin, V.I., Malygin, S.A., Moiseev, M.A., Myasnikov, V.E., Nichiporenko, V.O., Popov, L.G., Soluyanova, E.A., Shamanova, N.A., Tai, E.M., Usachev, S.V., Zapevalov, V.E., 2005, Development status of 1 MW and 1.5-1.7 MW / 170 GHz gyrotrons for ITER. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2006, Vol. 1, 107-112.

  739. Agapova, M.V., Denisov, G.G., Ilyin, V.I., Litvak, A.G., Myasnikov, V.E., Popov, L.G., Usachev, S.V., Zapevalov, V.E., Tai, E.M., 2006, Recent results in the development of 170 GHz/CW gyrotrons for ITER. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 516.

  740. Denisov, G.G., Litvak, A.G., Myasnikov, V.E., Tai, E.M., Zapevalov, V.E., 2007, Recent results of development in Russia of high power gyrotrons, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 43-44.

  741. Litvak, A.G., Denisov, G.G., Il'in, V.N., Myasnikov, V.E., Tai, E.M., Vikharev, A.L., Zapevalov, V.E., 2007, Resent results of development in Russia of high power gyrotrons. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 41-43.

    Google Scholar 

  742. Usachev, S.V., Agapova, M.V., Bogdashov, A.A., Chirkov, A.V., Denisov, G.G., Gnedenkov, A.Ph., Ilyin, V.N., Kostyna, A.N., Kuftin, A.N., Litvak, A.G., Malygin, V.I., Myasnikov, V.E., Nichiporenko, V.O., Popov, L.G., Soluyanova, E.A., Tai, E.M., Zapevalov, V.E., 2007, New test results of 170 GHz/1 MW/50%/CW gyrotron for ITER. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 44-45.

    Google Scholar 

  743. Popov, L.G., Denisov, G.G., Litvak, A.G., Agapova, M. V., Gnedenkov, A.Ph., Kostyna, A.N., Nichiporenko, V.O., Myasnikov, V.E., Tai, E.M., Usachev, S.V., Zapevalov, V.E., Chirkov, A.V., Ilin, V.I., Ilin, V.N., Kuftin, A.N., Malygin, S.A., Malygin, V.I.., Parshin, V.V., Pavel'ev, A.B., Rukavishnikova, V.G., Roschin, Yu.V., Sokolov, E.V., Solyanova, E.A., Vikharev, A.L., 2008, Development in Russia of 170 GHz gyrotron for ITER, Proc. 33rd Int. Conf. on Infrared, Millim and Terahertz Waves, Pasadena, CA, USA, W4 U4.1472.

  744. Popov, L.G., Usachev, S.V., Agapova, M.V., Chirkov, A.V., Denisov, G.G., Gnedenkov, A.Ph., Ilyin, V.I., Ilyin, V.N., Kostyna, A.N., Kuftin, A.N., Litvak, A.G., Malygin, S.A., Malygin, V.I., Myasnikov, V.E., Nichiporenko, V.O., Roschin, Yu.V., Rukavishnikova, V.G., Soluyanova, E.A., Tai, E.M., Yakunin, A.N., Yashnov, Yu.M., Zapevalov, V.E., 2008, Test results of 170 GHz / 1 MW / 50% gyrotron for ITER, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2009, Vol. 1, pp. 95-99.

  745. Litvak, A.G., Denisov, G.G., Agapova, M.V., Gnedenkov, A.Ph., Kostyna, A.N., Nichiporenko, V.O., Myasnikov, V.E., Popov, L.G., Tai, E.M., Usachev, S.V., Zapevalov, V.E., Chirkov, A.V., Ilin, V.I., Ilin, V.N., Kuftin, A.N., Malygin, S.A., Malygin, V.I., Parshin, V.V., Pavel'ev, A.B., Rukavishnikova, V.G., Roschin, Yu.V., Sokolov, E.V., Soluyanova, E.A., Vikharev, A.L., 2009, Development in Russia of 170 GHz gyrotron for ITER, Proc. 10th IEEE Int. Vacuum Electron. Conf. (IVEC2009), Rome, Italy, pp. 281-282.

  746. Litvak, A.G., Denisov, G.G., Agapova, M.V., Gnedenkov, A.Ph., Kostyna, A.N., Nichiporenko, V.O., Myasnikov, V.E., Popov, L.G., Tai, E.M., Usachev, S.V., Zapevalov, V.E., Chirkov, A.V., Ilin, V.I., Ilin, V.N., Kuftin, A.N., Malygin, S.A., Malygin, V.I., Parshin, V.V., Zavolsky, N.A., Pavel’ev, A.B., Rukavishnikova, V.G., Roschin, Yu.V., Sokolov, E.V., Soluyanova, E.A., Usov, V.G., Vikharev, A.L., 2009, Development in Russia of 170 GHz gyrotron for ITER, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, R4D02.0065.

  747. Litvak, A.G., Denisov, G.G., Agapova, M.V., Myasnikov, V.E., Popov, L.G., Tai, E.M., Usachev, S.V., Zapevalov, V.E., Chirkov, A.V., Ilin, V.I., Kuftin, A.N., Malygin, V.I., Sokolov, E.V., Soluyanova, E.A., 2010, Recent results of development in Russia of 170 GHz gyrotron for ITER, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Tu-E1.1.

  748. Usachev, S.V., Popov, L.G., Ilin, V.I., Agapova, M.V., Denisov, G.G., Gnedenkov, A.Ph., Ilin, V.N., Khvostenko, A.P., Kostyna, A.N., Kuftin, A.N., Litvak, A.G., Malygin, V.I., Myasnikov, V.E., Nichiporenko, V.O., Novikov, V.N., Rukavishnikova, V.G., Sokolov, E.V., Soluyanova, E.A., Tai, E.M., Usov, V.G., Yashnon, Yu.M., Zapevalov, V.E., 2011, Last test results of 170 GHz / 1 MW / 50% / CW gyrotron for ITER, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 136-137.

  749. Litvak, A., Denisov, G., Agapova, M.V., Myasnikov, V., Popov, L., Tai, E.M., Usachev, S.V., Zapevalov, V.E., Chirkov, A., Ilin, V.I., Kuftin, A.N., Malygin, V.I., Sokolov, E.V., Solyanova, E., 2011, Development in Russia of 170 GHz gyrotron for ITER, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), Houston, TX, USA, Th2A.1.

  750. Myasnikov, V.E., Agapova, M.V., Kuftin, A.N., Zapevalov, V.E., Denisov, G.G., Ilin, V.I., Belnova, L.M., Chirkov, A.V., Gnedenkov, A.Ph., Litvak, A.G., Malygin, V.I., Nichiporenko, V.O., Novikov, V.N., Popov, L.G., Roy, I.N., Rukavishnikova, V.G., Sokolov, E.V., Soluyanova, E.A., Tai, E.M., Usachev, S.V., 2013, Progress of 1.5-1.7 MW/170 GHz gyrotron development. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Tu1-6.

  751. Myasnikov, V.E., Agapova, M.V., Kuftin, A.N., Zapevalov, V.E., Denisov, G.G., Belnova, L.M., Chirkov, A.V., Gnedenkov, A.Ph., Litvak, A.G., Malygin, V.I., Manuilov, V.N., Nichiporenko, V.O., Novikov, V.N., Popov, L.G., Roy, I.N., Rukavishnikova, V.G., Sokolova, E.V., Soluyanova, E.A., Tai, E.M., Usachev, S.V., Yashnov, Yu.M., 2014, New results of extra-powerful 1.5 MW/170GHz gyrotron development. 39th Int. Conf. on Infrared, Millim. and Terahz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W4_D 25.8.

  752. Agapova, M.V., Myasnikov, V.E., Kuftin, A.N., Zapevalov, V.E., Denisov, G.G., Belnova, L.M., Chirkov, A.V., Gnedenkov, A.Ph., Litvak, A.G., Malygin, V.I., Manuilov, V.N., Nichiporenko, V.O., Novikov, V.N., Popov, L.G., Roy, I.N., Rukavishnikova, V.G., Sokolov, E.V., Soluyanova, E.A., Tai, E.M., Usachev, S.V., 2014, 1.5 MW/170 GHz gyrotron: Perspective CW regime- higher voltage or higher current priority? Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 145-146.

  753. Denisov, G.G., Litvak, A.G., Chirkov, A.V., Eremeev, A.G., Malygin, V.I., Tai, E.M., Myasnikov, V.E., Popov, L.G., Soluyanova, E.A., Belov, Yu.N., Kazansky, I.V., Kruglov, A.V., Nichiporenko, V.O., Sokolov, E.V., Usachev, S.V., Roy, I.N., 2015, Development status of gyrotron setup for ITER ECW system. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, H1E-6.

  754. Denisov, G., 2018, Recent results in IAP/GYCOM development of megawatt gyrotrons. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, Th-A2-4-1.

  755. Denisov, G.G., Glyavin, M.Yu., Fokin, A.P., Kuftin, A.N., Tsvetkov, A.I. , Sedov, A.S., Soluyanova, E.A., Bakulin, M.I., Sokolov, E.V., Tai, E.M., Morozkin, M.V., Proyavin, M.D., Zapevalov, V.E., 2018, First experimental tests of powerful 250 GHz gyrotron for future fusion research and collective Thomson scattering diagnostics. Review of Scientific Instruments, 89, 084702 (4 pp).

    Article  Google Scholar 

  756. Morozkin, M., Denisov, G., Tai, E., Soluyanova, E., Sedov, A., Fokin, A., Kuftin, A., Tsvetkov, A., Bakulin, M., Sokolov, E., Malygin, V., Proyavin, M., Zapevalov, V., Mocheneva, O., Glyavin, M., 2018, Development of the prototype of high power sub-THz gyrotron for advanced fusion power plant (DEMO). EPJ Web of Conferences, 195, 01008 (2 pp).

    Article  Google Scholar 

  757. Zapevalov, V.E., Belousov, V.I., Vlasov, S.N., Zavolsky, N.A., Koposova, E.V., Kornishin, S.Yu., Kuftin, A.N., Moiseev, M.A., Khizhnyak, V.I., 2014, Research of the gyrotron with the echelette resonator. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 166-167.

  758. Zapevalov, V.E., Vlasov, S.N., Koposova, E.V., Kuftin, A.N., Paveliev, A.B., Zavolsky, N.A., 2018, Various types of echelette resonators for gyrotrons. EPJ Web of Conferences, 195, 01022 (2 pp).

    Article  Google Scholar 

  759. Sakamoto, K., Kasugai, A., Tsuneaka, M. Takahashi, K., Imai, T., Kariya, T., Okazaki, Y., Hayashi, K., Mitsunaka, Y., Hirata, Y., 1995, Development of 170 GHz gyrotron for ITER. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 269-270.

    Google Scholar 

  760. Sakamoto, K., Kasugai, A., Tsuneoka, M., Takahashi, K., Imai, T., Kariya, T., Okazaki, Y., Hayashi, K., Mitsunaka, Y., Hirata, Y., 1996, Development of 170 GHz high power long pulse gyrotron for ITER. Proc. 21st Int. Conf. on Infrared and Millim. Waves, Berlin, AT1.

  761. Sakamoto, K., Kasugai, A., Takahashi, K., Tsuneoka, M., Imai, T., Kariya, T., Hayashi, K., 1996, Stable, single-mode oscillation with high-order volume mode at 1 MW, 170 GHz gyrotron. J. of Physical Society of Japan, 65, 1888-1890.

    Article  Google Scholar 

  762. Sakamoto, K., Kasugai, A., Tsuneoka, M., Takahashi, K., Ikeda, Yu., Imai, T., Nagashima, T., Ohta, M., T., Kariya, T., Hayashi, K., Mitsunaka, Y., Hirata, Y., Ito, Y., Okazaki, Y., 1997, Development of 170 GHz/500 kW gyrotrons. Int. J. of Infrared and Millimeter Waves, 18, 1637-1654.

  763. Tsuneoka, M., Fujita, H., Sakamoto, K., Kasugai, A., Imai, T., Nagashima, T., Asaka, T., Kamioka, N., Yasuda, M., Iiyama, T., Yoshida, T., Nara, H., Ishibashi, M., 1997, Development of d.c. power supply for gyrotron with energy recovery system. Fusion Eng. and Design, 36, 461-469.

    Article  Google Scholar 

  764. Sakamoto, K., Kasugai, A., Tsuneoka, M., Takahashi, K., Imai, T., 1999, High power 170 GHz gyrotron with synthetic diamond window. Rev. Sci. Instrum., 70, 208-212.

    Article  Google Scholar 

  765. Sakamoto. K., Hayashi, K., Shoyama, H., Kasugai, A., Takahashi, K., Tsuneoka, M., Ikeda, Y., Kariya, T., Mitsunaka, T., Imai, T., 2001, Development of 170 GHz long pulse gyrotron for ITER. Conf. Digest, 26th Int. Conf. on Infrared and Millimeter Waves, Toulouse, France, 5-59-5-63.

  766. Shoyama, H., Sakamoto, K., Hayashi, K., Kasugai, A., Tsuneoka, M., Tokahashi, K., Ideda, Y., Kariya, T., Mitsunaka, Y., Imai, T., 2002, High-efficiency oscillation of 170 GHz high-power gyrotron at TE31,8 mode using depressed collector. Jpn. J. Appl. Phys., 40, L906-L908.

    Article  Google Scholar 

  767. Kasugai, A., Sakamoto, K., Minami, R., Takahashi, K., Imai, T., 2004, Study of millimeter wave high-power. Nucl. Instruments & Methods in Physics Research, A528, 110-114.

    Article  Google Scholar 

  768. Sakamoto, K., Kasugai, A., Minami, R., Takahashi, K., Kobayashi, N., Imai, T., 2004, Development of high power 170 GHz gyrotron for ITER. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 109-110.

    Google Scholar 

  769. Sakamoto, K., Kasugai, A., Minami, R., Takahashi, K., Kobayashi, N., 2005, Development of long pulse and high power 170 GHz gyrotron. Journal of Physics: Conf. Series, 25, 8-12.

    Google Scholar 

  770. Kasugai, A., Minami, R., Takahashi, M., Kobayashi, N., Sakamoto, K., 2005, Development of a 170 GHz high-power and CW gyrotron for fusion application. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 287-288.

    Google Scholar 

  771. Minami, R., Kasugai, A., Takahashi, K., Kobayashi, N., Sakamoto, K., 2005, Development of high power gyrotron for ITER. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 100-106.

    Google Scholar 

  772. Kasugai, A., Takahashi, K., Kobayashi, N., Sakamoto, K., 2006, Development of 170 GHz gyrotron for ITER. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 202.

  773. Sakamoto, K., Kasugai, A., Takahashi, K., Minami, R., Kobayashi, N., Kajiwara, K., 2007, Achievement of robust high-efficiency 1 MW oscillation in the hard-self-excitation region by a 170 GHz continuous-wave gyrotron. Nature Physics, 3, 411-414.

    Article  Google Scholar 

  774. Shoyama, H., Sakamoto, K., Hayashi, K., Kasugai, A., Tsuneoka, M., Takahashi, K., Ikeda, Y., Kariya, T., Mitsunaka, Y., Imai, T., 2001, High-efficiency oscillation of 170 GHz high-power gyrotron at TE31,8 mode using depressed collector. Jpn. J. Appl. Phys., 40, L 906-908.

    Article  Google Scholar 

  775. Kasugai, A., Kajiwara, K., Takahashi, K., Kobayashi, N., Kariya, T., Mitsunaka, Y., Sakamoto, K., 2007, Steady state operation of high power gyrotron for ITER, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 37-40.

  776. Sakamoto, K., 2007, Gyrotrons and mm wave technology for ITER. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 4-7.

    Google Scholar 

  777. Sakamoto, K., Kasugai, A., Kajiwara, K., Takahashi, K., Kobayashi, N., 2007, Demonstration of high efficiency 1 MW oscillation by 170 GHz CW gyrotron. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 708-709.

    Google Scholar 

  778. Sakamoto, K., Kajiwara, K., Kasugai, A., Oda, Y., Kobayashi, T., Takahashi, K., Kobayashi, N., Moriyama, S., Fujii, T., 2008, High power gyrotron development for fusion application, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, R4A1.1695.

  779. Kasugai, A., Sakamoto, K., Takahashi, K., Kajiwara, K., Kobayashi, N., 2008, Steady-state operation of 170 GHz-1 MW gyrotron for ITER. Nucl. Fusion, 48, 054009 (6 pp).

    Article  Google Scholar 

  780. Sakamoto, K., Kajiwara, K., Kasugai, A., Takahashi, K., Kobayashi, N., Oda, Y., 2008, High power 170 GHz gyrotron development in JAEA, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 1, 7-14.

  781. Sakamoto, K., Kasugai, A., Kajiwara, K., Oda, Y., Takahashi, K., Hayashi, K., Ideda, Y., Okazaki, Y., Kobayashi, N., 2009, Progress of high power gyrotron development in JAEA, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, R4D01.0427.

  782. Sakamoto, K., Kasugai, A., Kajiwara, K., Takahashi, K., Oda, Y., Hayashi, K., Kobayashi, N., 2009, Progress of high power 170 GHz gyrotron in JAEA, Nucl. Fusion, 49, 095019 (6 pp).

    Article  Google Scholar 

  783. Kajiwara, K., Kasugai, A., Oda, Y., Takahashi, K., Kobayashi, N., Sakamoto, K., 2009, Long pulse and high power repetitive operation of the 170 GHz ITER gyrotron, Plasma and Fusion Research: Letters, 4, 006-1 – 006-3.

    Google Scholar 

  784. Kajiwara, K., Oda, Y., Kasugai, A., Takahashi, K., Sakamoto, K., 2010, Reliability test of the ITER 170 GHz gyrotron and development of the two-frequency gyrotron, Proc. 11th IEEE Int. Vacuum Electronics Conf. (IVEC 2010), Monterey, USA, pp. 31-32.

  785. Sakamoto, K., Kajiwara, K., Takahashi, K., Oda, Y., Kasugai, A., Kobayashi, T., Kobayashi, N., Henderson, M., Darbos, C., 2010, Development of high power gyrotron for ITER application, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Tu-E1.6.

  786. Kajiwara, K., Kasugai, A., Oda, Y., Takahashi, K., Sakamoto, K., Darbos, C., Henderson, M., 2011, Reliability test of the 170 GHz gyrotron for ITER, J. of Infrared Milli Terahz Waves, 32, 329-336.

    Article  Google Scholar 

  787. Kajiwara, K., Oda, Y., Kasugai, A., Takahashi, K., Sakamoto, K., Darbos, C., Henderson, M.A., 2011, Repetitive gyrotron operation for ITER. Fusion Eng. and Design, 86, 955-958.

    Article  Google Scholar 

  788. Kajiwara, K., Oda, Y., Kasugai, A., Takahashi, K., Sakamoto, K., 2011, Development of dual-frequency gyrotron with triode magnetron injection gun. Applied Physics Express, 4, 126001-1 (3 pages).

    Article  Google Scholar 

  789. Oda, Y., Kajiwara, K., Takahashi, K., Sakamoto, K., 2012, Development of dual frequency gyrotron and high power test of EC components. EPJ Web of Conferences, 32, 04004/1-8.

    Google Scholar 

  790. Kajiwara, K., Oda, Y., Kasugai, A., Takahashi, K., Sakamoto, K., 2012, Progress of the development of gyrotron and gyrotron system for ITER, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, pp. 107-108.

  791. Oda, Y., Kajiwara, K., Takahashi, K., Mitsunaka, Y., Sakamato, K, 2013, High efficiency coupling of radio frequency beams from the dual frequency gyrotron with a corrugated transmission system. Review of Scientific Instruments, 84, 013501 (6 pp).

    Article  Google Scholar 

  792. Kajiwara, K., Sakamoto, K., Oda, Y., Hayashi, K., Takahashi, K., Kasugai, A., 2013, Full high-power modulation on a 170 GHz 1 MW ITER gyrotron with a triode magnetron injection gun. Nuclear Fusion, 53, 043013 (5 pp).

    Article  Google Scholar 

  793. Sakamoto, K., Kajiwara, K., Oda, Y., Hayashi, K., Takahashi, K., Kobayashi, T., Moriyama, S., 2013, Status of high power gyrotron development in JAEA. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 6A-3.

  794. Sakamoto, K., Kajiwara, K., Oda, Y., Hayashi, K., Ikeda, R., Takahashi, K., Kobayashi, T., Moriyama, S., 2013, Progress of high power long pulse gyrotron for fusion applications. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo5-1.

  795. Sakamoto, K., Oda, Y., Ikeda, R., Kobayashi, T., Kajiwara, K., Hayashi, K., Takahashi, K., Moriyama, S., 2014, Progress on high power long pulse gyrotron development in JAEA. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W3_D-25.3.

  796. Sakamoto, K., Oda, Y., Ikeda, R., Kobayashi, T., Kajiwara, K., Takahashi, K., Moriyama, S., 2015, Development of high power gyrotron and related technologies. Terahertz Science and Technology, 8, No. 1, 1-18.

    Google Scholar 

  797. Sakamoto, K., Ikeda, R., Oda, Y., Kobayashi, Kajiwara K, Shidara, H., Takahashi, K., Moriyama, S., 2015, Status of high power gyrotron development in JAEA. 16th IEEE International Conference on Vacuum Electronics (IVEC 2015), Beijing, P.R. China, S23.1.

  798. Ikeda, R., Kajiwara, K., Oda, Y., Takahashi, K., Sakamoto, K., 2015, High-power and long-pulse operation of TE31,11 mode gyrotron. Fusion Eng. and Design, 96-97, 482-487.

    Article  Google Scholar 

  799. Oda, Y., Ikeda, R., Takahashi, K., Kajiwara, K., Kobayashi, T., Sakamoto, K., Moriyama, S., Darbos, C., Henderson, M., 2017, Recent activities of ITER gyrotron development in QST. EPJ Web of Conferences, 149, 01002 (2 pp).

    Article  Google Scholar 

  800. Ikeda, R., Oda, Y., Kajiwara, K., Kobayashi, T., Terakado, M., Takahashi, K., Moriyama, S., Sakamoto, K., 2018, Progress on performance test of ITER gyrotron. Proc. 19th Int. Vacuum Electronics Conference (IVEC 2018), Monterey, CA, USA, 8.1.

  801. Ikeda, R., Oda, Y., Kajiwara, K., Kobayashi, T., Nakai, T., Terakado, M., Takahashi, K., Moriyama, S., Sakamoto, K., 2018, Progress on 1 MW operation of Japan gyrotron for ITER EC system. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, Tu-P2-R1-1.

  802. Sakamoto, K., Oda, Y., Kariya, T., Minami, R., Ikeda, R., Kajiwara, K., Takahashi, K., Hayashi, K., Imai, T., 2015, Preliminary result of 300 GHz short pulse high order mode gyrotron. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W5_P25.1.

  803. Oda, Y., Kariya, T., Minami, R., Ikeda, R., Kajiwara, K., Takahashi, K., Hayashi, K., Imai, T., Sakamoto, K., 2015, Progress of 300 GHz high order mode gyrotron development. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, TS-68.

  804. Ikeda, R., Oda, Y., Kobayashi, T., Terakado, M., Kajiwara, K., Takahashi, K., Moriyama, S., Sakamoto, K., 2016, Development of multi-frequency gyrotron for ITER and DEMO at QST. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 26-30, 2016, Copenhagen, Denmark, H2D.2, private communication.

  805. Sakamoto, K., Ikeda, R., Kariya, T., Oda, Y., Kobayashi, T., Kajiwara, K., Hayashi, K., Minami, R., Takahashi, K., Imai, T., Moriyama, S., 2017, Study of high power and high frequency gyrotron for fusion reactor. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, RA2.3.

  806. Hayashi, K., Mitsunaka, Y., Hirata, Y., Kariya, T., Okazaki, Y., Yamazaki, C., Saito, F., 2001, Design and tests of 168-GHz, 500-kW gyrotrons and power supply system. Fusion Engineering and Design, 53, 457-464.

    Article  Google Scholar 

  807. Shimozuma, T., Kubo, S., Yoshimura, Y., Igami,H., Takahashi, H., Kobayashi, S., Ito, S., Mizumo, Y., Okada, K., Takita, Y., Mutoh, T., Idei, H., Minami, R., Kariya, T., Imai, T., 2010, Progress of a multi-megawatt gyrotron system for electron cyclotron heating on the large helical device, Proc. 35th Int. Conf. Infrar Milli Terahz Waves, Rome, Italy, Tu-P.04.

  808. Shimozuma, T., Takahashi, H., Ito, S., Kubo, S., Yoshimura, Y., Igami, H., Nishiura, M., Ogasawara, S., Makino, R., Mizuno, Y., Okada, K., Kobayashi, S., Mutoh, T., Minami, R., Kariya, T., Imai, T., 2013, Installation of a 154 GHz mega-watt gyrotron and its contribution to the extension of plasma parameter regime in LHD. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, Mo1-3.

  809. Flyagin, V.A., Khishnyak, V.I., Manuilov, V.N., Pavelyev, A.B., Pavelyev, V.G., Piosczyk, B., Dammertz, G., Höchtl, O., Iatrou, C., Kern, S., Nickel, H.-U., Thumm, M., Wien, A., Dumbrajs, O., 1994, Development of a 1.5 MW coaxial gyrotron at 140 GHz. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 75-76.

    Google Scholar 

  810. Piosczyk, B., Braz, O., Dammertz, G., Iatrou, C.T., Kern, S., Möbius, A., Thumm, M., Wien, A., Zhang, S.C., Flyagin, V.A., Khishnyak, V.I., Kuftin, A.N., Manuilov, V.N., Pavelyev, A.B., Pavelyev, V.G., Postnikova, A.N., Zapevalov, V.E., 1995, Development of a 1.5 MW, 140 GHz coaxial gyrotron. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 423-424.

    Google Scholar 

  811. Pioscyzk, B., Braz, O., Dammertz, G., Iatrou, C.T., Kern, S., Kuntze, M., Möbius, A., Thumm, M., Flyagin, V.A., Khishnyak, V.I., Kuftin, A.N., Malygin, V.I., Pavelyev, A.B., Zapevalov, V.E., 1996, A 140 GHz, 1.5 MW, TE28,16-coaxial cavity gyrotron. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, AM2.

  812. Iatrou, C.T., Braz, O., Dammertz, G., Kern, S., Kuntze, M., Piosczyk, B., Thumm, M., 1996, Operation of a megawatt coaxial gyrotron at 165 GHz. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, ATh15.

  813. Thumm, M., Braz, O., Dammertz, G., Iatrou, C.T., Kern, S., Kuntze, M., Möbius, A., Piosczyk, B., Flyagin, V.A., Khishnyak, V.I., Malygin, V.I., Pavelyev, A.B., Zapevalov, V.E., 1996, Experimental results of 1.5 MW coaxial cavity gyrotrons in the frequency range 115-170 GHz. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 614-633.

    Google Scholar 

  814. Piosczyk, B., Braz, O., Dammertz, G., Iatrou, C.T., Kern, S., Kuntze, M., Michel, G., Möbius, A., Thumm, M., Flyagin, V.A., Khishnyak, V.I., Pavelyev, A.B., Zapevalov, V.E., 1997, Operation of a coaxial gyrotron with a dual RF-beam output. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 114-115.

    Google Scholar 

  815. Piosczyk, B., Braz, O., Dammertz, G., Iatrou, C.T., Kern, S., Kuntze, M., Möbius, A., Thumm, M., Flyagin, V.A., Khishnyak, V.I., Malygin, V.I., Pavelyev, A.B., Zapevalov, V.E., 1997, A 1.5-MW, 140-GHz, TE28,16-coaxial cavity gyrotron. IEEE Trans. on Plasma Science, 25, 460-469.

    Article  Google Scholar 

  816. Iatrou, C.T., Braz, O., Dammertz, G., Kern, S., Kuntze, M., Pioszyk, B., M. Thumm, 1997, Design and experimental operation of a 165-GHz, 1.5-MW, coaxial-cavity gyrotron with axial rf output. IEEE Trans. on Plasma Sciences, 25, 470-479.

    Article  Google Scholar 

  817. Piosczyk, B., Braz, O., Dammertz, G., Iatrou, C.T., Illy, S., Kuntze, M., Michel, G., Möbius, A., Thumm, M., Flyagin, V.A., Khishnyak, V.I., Pavelyev, A.B., Zapevalov, V.E., 1998, Coaxial cavity gyrotron with dual RF beam output. IEEE Trans. on Plasma Science, 26, 393-401.

    Article  Google Scholar 

  818. Piosczyk, B., Braz, O., Dammertz, G., Iatrou, C.T., Kuntze, M., Michel, G., Möbius, A., Thumm, M., 1998, 165 GHz, TE31,17 - coaxial cavity gyrotron with quasi-optical RF-output. Conf. Dig. 23rd Int. Conf. on Infrared and Millim. Waves, Colchester, UK, 168-169.

  819. Piosczyk, B., Braz, O., Dammertz, G., Iatrou, C.T., Illy, S., Kuntze, M., Michel, G., Thumm, M., 1999, 165 GHz, 1.5 MW-Coaxial cavity gyrotron with depressed collector. IEEE Trans. on Plasma Science, 27, 484-489.

    Article  Google Scholar 

  820. Pioszcyk, B., Braz, O., Dammertz, G., Kuntze, M., Michel, G., Lamba, O.S., Thumm, M., 1999, Progress report on the 165 GHz coaxial cavity gyrotron. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TU-A9.

  821. Piosczyk, B., Braz, O., Dammertz, G., Kuntze, M., Michel, G., Thumm, M., 1999, Status of the 1.5 MW, 165 GHz coaxial cavity gyrotron. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 629-634.

    Google Scholar 

  822. Piosczyk, B., Arnold, A., Dammertz, G., Dumbrajs, O., Kuntze, M., Leonhardt, W., Pavelyev, A.B., Schmid, M., Thumm, M., 2000, 2.2 MW, 165 GHz coaxial cavity gyrotron. Conf. Digest 25th Int. Conf. Infrared and Milli Waves, Beijing, P.R. China, 19-20.

  823. Piosczyk, B., Arnold, A., Dammertz, G., Kuntze, M., Michel, G., Lamba, O.S., Thumm, M.K., 2000, Step-frequency operation of a coaxial cavity from 134 to 169.5 GHz. IEEE Trans. on Plasma Science, 28, 918-923.

    Article  Google Scholar 

  824. Dumbrajs, O., Khizhnyak, V.I., Pavelyev, A.B., Piosczyk, B., Thumm, M.K., 2000, Design of rapid-frequency step-tunable powerful coaxial-cavity harmonic gyrotrons. IEEE Trans. on Plasma Science, 28, 681-687.

    Article  Google Scholar 

  825. Piosczyk, B., Arnold, A., Dammertz, G., Dumbrajs, O., Kuntze, M., Thumm, M.K., 2002, Coaxial cavity gyrotron-recent experimental results. IEEE Trans. on Plasma Science, 30, 819-827.

    Article  Google Scholar 

  826. Ling, G., Piosczyk, B., Thumm, M.K., 2000, A new approach for a multistage depressed collector for gyrotrons. IEEE Trans. on Plasma Science, 28, 606-613.

    Article  Google Scholar 

  827. Piosczyk, B., Arnold, A., Budig, H., Dammertz, G., Dumbrajs, O., Drumm, O., Kartikeyan, M.V., Kuntze, M., Thumm, M., Yang, X., 2002, A 2 MW, CW coaxial cavity gyrotron. Experimental and technical conditions. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 104-110.

    Google Scholar 

  828. Piosczyk, B., Budig, H., Dammertz, G., Dumbrajs, O., Drumm, O., Illy, S., Jin, J., Thumm, M., 2003, Coaxial cavity gyrotron – recent results and ongoing development work. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 167-168.

    Google Scholar 

  829. Piosczyk, B., Dammertz, G., Dumbrajs, O., Kartikeyan, M.V., Thumm, M.K., Yang, X., 2004, 165-GHz coaxial cavity gyrotron. IEEE Trans. on Plasma Science, 32, 853-860.

    Article  Google Scholar 

  830. Piosczyk, B., Arnold, A., Budig, H., Dammertz, G., Dumbrajs, O., Drumm, O., Kartikeyan, M.V., Kuntze, M., Thumm, M., Yang, X., 2003, Towards a 2 MW, CW, 170 GHz coaxial cavity gyrotron for ITER. Fusion Engineering and Design, 66-68, 481-485.

    Article  Google Scholar 

  831. Piosczyk, B., Arnold, A., Budig, H., Dammertz, G., Dumbrajs, O., Illy, S., Jin, J., Michel, G., Rzesnicki, T., Thumm, M., Wagner, D., 2004, 2 MW, CW, 170 GHz coaxial cavity gyrotron. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 45-49, Invited Paper.

  832. Piosczyk, B., Arnold, A., Borie, E., Dammertz, G., Dumbrajs, O., Heidinger, R., Illy, S., Jin, J., Koppenburg, K., Michel, G., Rzesnicki, T., Thumm, M., Yang, X., 2004, Development of advanced high power gyrotrons for EC H&CD applications in fusion plasmas. Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating (EC13), ed. A. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2005, 377-382.

    Google Scholar 

  833. Piosczyk, B., Rzesnicki, T., Arnold, A., Budig, H., Dammertz, G., Dumbrajs, O., Illy, S., Jin, J., Koppenburg, K., Leonhardt, W., Michel, G., Schmid, M., Thumm, M., Yang, X., 2004, Progress in the development of the 170 GHz coaxial cavity gyrotron. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 107-108.

    Google Scholar 

  834. Piosczyk, B., Dammertz, G., Dumbrajs, O., Drumm, O., Illy, S. Jin, J., Thumm, M., 2004, A 2-MW, 170-GHz coaxial cavity gyrotron. IEEE Trans. on Plasma Science, 32, 413-417.

    Article  Google Scholar 

  835. Piosczyk, B., Dammertz, G., Dumbrajs, O., Illy, S., Jin, J., Leonhardt, W., Michel, G., Prinz, O., Rzesnicki, T., Schmid, M., Thumm, M., Yang, X., 2005, A 2 MW, 170 GHz coaxial cavity gyrotron – experimental verification of the design of main components. Journal of Physics: Conference Series, 25, 24-32.

    Google Scholar 

  836. Hogge, J.-P., Alberti, S., Arnold, A., Bariou, D., Beunas, A., Bonicelli, T., Chavan, R., Cirani, S., Dumbrajs, O., Drumm O., Fasel, D., Giguet, E., Goodman, T., Henderson, M., Illy, S., Jin, J., LeCloarec, G., Lievin, C., Magne, R., Mondino, P.-L., Piosczyk, B., Porte, L., Rzesnicki, T., Santinelli, M., Sterck, A.B., Thumm, M., Tran, M.Q., Verhoeven, A.G.A., Yovchev, I., 2004, Development of a 2 MW, CW, 170 GHz coaxial cavity gyrotron for ITER. Proc. 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating (EC13), ed. A. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2005, 393-397.

    Google Scholar 

  837. Hogge, J.-P., Alberti, S., Arnold, A., Bariou, D., Benin, P., Bonicelli, T., Bruschi, A., Chavan, R., Cirant, S., Dumbrajs, O., Fasel, D., Gandini, F., Giguet, E., Goodman, T., Heidinger, R., Henderson, M., Illy, S., Jin, J., Lievin, C., Magne, R., Marmillod, P., Mondino, P.-L., Perez, A., Piosczyk, B., Porte, L., Rzesnicki, T., Santinelli, M., Thumm, M., Tran, M.Q., Yovchev, I., 2005, Development of a 2-MW, CW coaxial gyrotron at 170 GHz and test facility for ITER. Journal of Physics: Conference Series, 25, 33-44.

    Google Scholar 

  838. Lievin, C., Alberti, S., Arnold, A., Bariou, D., Benin, P., Bonicelli, T., Dammertz, G., Dumbrajs, O., Fasel, D., Giguet, E., Goodman, T., Heidinger, R., Henderson, M., Hogge, J.P., Illy, S., Jin, J., Mondino, P.L., Piosczyk, B., Porte, L., Rzesnicki, T., Thumm, M., Tran, M.Q., Yovchev, I., 2005, Development of a 2-MW, CW coaxial gyrotron at 170 GHz for electron-cyclotron-resonance-heating in ITER. Proc. 6th IEEE Int. Vacuum Electronics Conf. (IVEC 2005), Noordwijk, The Netherlands, 21-24.

  839. Piosczyk, B., Rzesnicki, T., Dammertz, G., Dumbrajs, O., Illy, S., Jin, J., Leonhardt, W., Michel, G., Schmid, M., Thumm, M., Yang, X., 2005, 170 GHz, 2 MW, CW coaxial cavity gyrotron – experimental verification of the design. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 289-290.

    Google Scholar 

  840. Piosczyk, B., Alberti, S., Bariou, D., Benin, P., Bonicelli, T., Dammertz, G., Dumbrajs, O., Fasel, D., Giguet, E., Goodman, T., Heidinger, R., Henderson, M., Hogge, J.P., Illy, S., Jin, J., Lievin, C., Michel, G., Mondino, P.L., Porte, L., Rzesnicki, T., Thumm, M., Tran, M.Q., Yang, X., Yovchev, I., 2005, Progress in the development of the 170 GHz coaxial cavity gyrotron for ITER. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Phys., RAS, N. Novgorod, 2006,Vol. 1, 91-99.

    Google Scholar 

  841. Piosczyk, B., Alberti, S., Benin, P., Bonicelli, T., Dammertz, G., Dumbrajs, O., Gantenbein, G., Giguet, E., Goodman, T., Hogge, J.P., Illy, S., Lievin, C., Michel, G., Porte, L., Rzesnicki, T., Schmid, M., Thumm, M., Tran, M.Q., 2006, Progress in development of the 170 GHz, 2 MW coaxial cavity gyrotron for ITER. Conf. Digest 31st Int. Conf. Infrared and Milli Waves and 14th Int. Conf. Terahertz Electronics, Shanghai, China, 197.

  842. Bonicelli, T., S. Alberti, S. Cirant, O. Dormicchi, D. Fasel, J.P. Hogge, S. Illy, J. Jin, C. Lievin, P.L. Mondino, B. Piosczyk, T. Rzesnicki, M. Santinelli, G. Taddia, M. Thumm, M.Q. Tran, 2007, EC power sources: European technological developments towards ITER, Fusion Engineering and Design, 82, 619-626.

    Article  Google Scholar 

  843. Rzesnicki, T., Piosczyk, B., Dammertz, G., Gantenbein, G., Thumm, M., Michel, G., 2007, 170 GHz, 2 MW coaxial cavity gyrotron – investigation of the parasitic oscillations and efficiency of the RF-output system -, Proc 8th IEEE International Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 45-46.

  844. Rzesnicki, T., Piosczyk, B., Flamm, J., Jin, J., Kern, S., Prinz, O., Thumm, M., 2008, 170 GHz, 2 MW coaxial cavity gyrotron - experimental investigations on the pre-prototype tube -, Proc. 9th IEEE Int. Vacuum Electr. Conf. (IVEC 2008), Monterey, CA, USA, 30-31.

  845. Rzesnicki, T., Piosczyk, B., Flamm, J., Jin, J., Kern, S., Prinz, O., Thumm, M., 2008, Recent experimental results on the 170 GHz, 2 MW coaxial cavity pre-prototype gyrotron for ITER, Proc. 33rd Int. Conf. Infrared, Millim. and Terahz Waves, Pasadena, CA, USA, W4 U5.1521.

  846. Alberti, S., Albajar, F., Avramides, K.A., Benin, P., Bin, W., Bonicelli, T., Bruschi, A., Cirant, S., Droz, E., Dumbrajs, O., Fasel, D., Gandini, F., Goodman, T., Hogge, J.-P., Illy, S. Jawla, S., Jin, J., Kern, S., Lievin, C., Marlétaz, B., Marmillod, Ph., Pagonakis, I., Perez, A., Piosczyk, B., Porte, L., Rzesnicki, T., Siravo, U., Thumm, M., Tran, M.Q., 2008, Status of development of the 2 MW, 170 GHz coaxial-cavity gyrotron for ITER, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, F2A1.1413.

  847. Hogge, J.-P., Goodman, T.P., Alberti, S., Albajar, F., Avramides, K.A., Benin, P., Bethuys, S., Bin, W., Bonicelli, T., Bruschi, A., Cirant, S., Droz, E., Dumbrajs, O., Fasel, D., Gandini, F., Gantenbein, G., Illy, S., Jawla, S., Jin, J., Kern, S., Lavanchy, P., Liévin, C., Marlétaz, B., Marmillod, P., Perez, A., Piosczyk, B., Pagonakis, I., Porte, L., Rzesnicki, T., Siravo, U., Thumm, M., Tran, M.Q., 2009, First experimental results from the European Union 2-MW coaxial cavity ITER gyrotron prototype, Fusion Science and Technology, 55, 204-212.

    Article  Google Scholar 

  848. Rzesnicki, T., Piosczyk, B., Gantenbein, G., Jin, J., Kern, St., Samartsev, A., Thumm, M., 2009, 170 GHz, 2 MW coaxial cavity gyrotron for ITER – recent results obtained with a short pulse tube –, Proc. 10th IEEE Int. Vacuum Electronics Conference (IVEC 2009), Rome, Italy, pp. 277-278.

  849. Rzesnicki, T., Piosczyk, B., Gantenbein, G., Jin, J., Kern, S., Samartsev, A., Thumm, M., 2009, Major progress in the development of the 2 MW coaxial-cavity gyrotron for ITER, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, R4D04.0032.

  850. Rzesnicki, T., Piosczyk, B., Kern, S., Illy, S., Jin, S., Samartsev, A., Schlaich, A., Thumm, M., 2010, 2.2-MW record power of the 170-GHz European preprototype coaxial-cavity gyrotron for ITER, IEEE Trans. on Plasma Science, 38, 1141-1149.

    Article  Google Scholar 

  851. Rzesnicki, T., Piosczyk, B., Kern, S., Illy, S., Jin, J., Samartsev, A., Schlaich, A., Thumm, 2010, Experiments with the European 2 MW coaxial-cavity pre-prototype gyrotron for ITER, Proc. 11th IEEE Int. Vacuum Electronics Conference (IVEC 2010), Monterey, USA, pp. 27-28.

  852. Rzesnicki, T., Piosczyk, B., Roy Choudhury, A., Illy, S., Jin, J., Kern, S., Samartsev, A., Schlaich, A., Thumm, M., 2010, Recent results with the European 2 MW coaxial-cavity pre-prototype gyrotron for ITER, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Tu-E1.2.

  853. Rzesnicki, T., Piosczyk, B., Illy, S., Jin, J., Kern S., Pagonakis, I.Gr., Samartsev, A., Schlaich, A., Thumm, M., 2011, 2 MW, 170 GHz coaxial-cavity gyrotron for ITER: Results obtained with a short pulse pre-prototype at KIT, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 121-122.

  854. Rzesnicki, T., Piosczyk, B., Illy, S., Jin, J., Kern, S., Pagonakis, I., Samartsev, A., Schlaich, A., Thumm, M., 2011, Status of experiments with the 2 MW coaxial-cavity pre-prototype gyrotron for ITER, Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), Houston, TX, USA, Th2A.3.

  855. Kern, S., Hogge, J.P., Alberti, S., Avramides, K., Gantenbein, G., Illy, S., Jelonnek, J., Jin, J., Li, F., Pagonakis, I.Gr., Piosczyk, B., Rzesnicki, T., Thumm, M.K., Tigelis, I., Tran, M.Q., and the whole EU home team of EGYC, 2012, Experimental results and recent developments on the EU 2 MW 170 GHz coaxial cavity gyrotron for ITER. EPJ Web of Conferences, 32, 04009/1-6.

  856. Rzesnicki, T., Piosczyk, B., Gantenbein, G., Illy, S., Jelonnek, J., Jin, J., Kern, S., Pagonakis, I.Gr., Samartsev, A., Schlaich, A., Thumm, M., 2012, 2 MW coaxial-cavity pre-prototype gyrotron for ITER – recent experiments with the modified gyrotron setup -, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Mon-A-3-3.

  857. Rzesnicki, T., Gantenbein, G., Illy, S., Jelonnek, J., Jin, J., Pagonakis, I.G., Piosczyk, B., Schlaich, A., Thumm, M., 2013, 2 MW, 170 GHz coaxial-cavity short-pulse gyrotron – Investigations on electron beam instabilities and parasitic oscillations. Proc. 38th Int. Conf. on Infrared, Millimeter and THz Waves (IRMMW-THz2013), Mainz, Germany, We5-3.

  858. Rzesnicki, T., Piosczyk, B., Gantenbein, G., Jelonnek, J., Jin, J., Pagonakis, I.Gr., Schlaich, A., Thumm, M., 2014, 2 MW, 170 GHz coaxial-cavity short-pulse gyrotron – Single stage depressed collector operation. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W4_D-25.10.

  859. Rzesnicki, T., Pagonakis, I.Gr., Samartsev, A., Avramidis, K., Gantenbein, G., Illy, S., Jelonnek, J., Jin, J., Lechte, C., Losert, M., Piosczyk, B., Thumm, M., EGYC Team, 2015, Recent Experimental results of the European 1 MW, 170 GHz short-pulse gyrotron prototype for ITER. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, H1E-1.

  860. Ruess, S., T. Rzesnicki, T., Pagonakis, I.Gr., Kobarg, T., Fuchs, M., Illy, S., Gantenbein, G., Thumm, M., Jelonnek, J., 2016, Experimental results and outlook of the 2 MW 170 GHz coaxial-cavity gyrotron towards long pulse operation. Proc. 10th German Microwave Conference (GeMiC 2016), March 14-16, 2016, Bochum, Germany, S11.3.

  861. Ruess, S., Avramidis, K.A., Fuchs, M., Gantenbein, G., Ioannidis, Z., Illy, S., Jin, J., Kalaria, P.C., Kobarg, T., Pagonakis, I.Gr., Ruess, T., Rzesnicki, T., Schmid, M., Thumm, M., Weggen, J., Zein, A., Jelonnek, J., 2018, KIT coaxial gyrotron development: from ITER toward DEMO. Int. J. of Microwave and Wireless Technologies, 10, 547-555.

    Article  Google Scholar 

  862. Ruess, S., Avramidis, K.A., Gantenbein, G., Ioannidis, Z., Illy, S., Kalaria, P.C., Kobarg, T., Pagonakis, I.Gr., Ruess, T., Rzesnicki, T., Thumm, M., Weggen, J., Jelonnek, J., 2018, Current status of the KIT coaxial-cavity longer-pulse gyrotron and its key components. EPJ Web of Conferences, 187, 01028 (2 pp).

    Article  Google Scholar 

  863. Rzesnicki, T., Avramidis, K.A., Gantenbein, G., Illy, S., Ioannidis, Z.C., Jin, J., Pagonakis, I.Gr., Ruess, S., Ruess, T., Schmid, M., Thumm, M., Weggen, J., Jelonnek, J., 2018, Development and first operation of the 170 GHz, 2 MW longer-pulse coaxial-cavity modular gyrotron prototype at KIT. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, We-A2-4-4.

  864. Vlasov, S.N., Zagryadskaya, L.I., Orlova, I.M., 1976, Open coaxial resonators for gyrotrons. Radio Eng. Electron. Phys., 21, 96-102.

    Google Scholar 

  865. Gaponov, A.V., Flyagin, V.A., Goldenberg, A.L., Nusinovich, G.S., Tsimring, Sh.E., Usov, V.G., Vlasov, S.N., 1981, Powerful millimeter-wave gyrotrons. Int. J. Electronics, 51, 277-302.

    Article  Google Scholar 

  866. Flyagin, V.A., Khizhnyak, V.I., Kuftin, A.N., Manuilov, V.N., Pavelyev, A.B., Pavelyev, V.G., Zapevalov, V.E., 1997. Investigation of coaxial gyrotrons at IAP RAS. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 112-113.

    Google Scholar 

  867. Pavelyev, A.B., Flyagin, V.A., Khizhnyak, V.I., Manuilov, V.N., Zapevalov, V.E., 1999, Investigations of advanced coaxial gyrotrons at IAP RAS. Proc. Int. University Conf. “Electronics and Radiophysics of Ultra-High Frequencies” (UHF-99), 1999, St. Petersburg, Russia, 142-145.

  868. Khizhnyak, V.I., Manuilov, V.N., Pavelyev, A.B., Zapevalov, V.E., 2000, Investigations of advanced coaxial gyrotrons at IAP RAS, Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 117-118.

  869. Zapevalov, V.E., Pavelyev, A.B., Khizhnyak, V.I., 2000, Experimental test of the natural scheme of electron beam energy recovery in a coaxial gyrotron. Radiophysics and Quantum Electronics, 43, 671-674.

    Article  Google Scholar 

  870. Khizhnyak, V.I., Manuilov, V.N., Pavelyev, A.B., Zapevalov, V.E., 2001, Natural scheme of electron beam energy recovery in coaxial gyrotron. Proc. 9th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 165, 153-157.

    Google Scholar 

  871. Zapevalov, V.E., Khizhnyak, V.I., Moiseev, M.A., Pavelyev, A.B., Zavolsky, N.A., 2002, Advantages of coaxial cavity gyrotrons. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 111-115.

    Google Scholar 

  872. Flyagin, V.A., Khizhnyak, V.I., Manuilov, V.N., Moiseev, M.A., Pavelyev, A.B., Zapevalov, V.E., Zavolsky, N.A., 2003, Investigations of advanced coaxial gyrotrons at IAP RAS. Int. J. of Infrared and Millimeter Waves, 24, 1-17.

    Article  Google Scholar 

  873. Hogge, J.P., Kreischer, K.E., Read, M.E., 1995, Results of testing a 3 MW, 140 GHz gyrotron with a coaxial cavity. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 417-418.

    Google Scholar 

  874. Kimura, T., Hogge, J.P., Advani, R., Denison, D., Kreischer, K.E., Temkin, R.J., 1996, Investigation of megawatt power level gyrotrons for ITER. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, AM1.

  875. Advani, R., Hogge, J.P., Kreischer, K.E., Pedrozzi, M., Read, M.E., Sirigiri, J.R., Temkin, R.J., 2002, Experimental investigation of a 140 GHz coaxial gyrotron oscillator. IEEE Trans. on Plasma Science, 29, 943-950.

    Article  Google Scholar 

  876. Liu, S., Liu, D., Yan, Y., Yu, S., Fu, W., 2015, Theoretical and experimental investigations on the coaxial gyrotron with two electron beams. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, M1E-1.

  877. Beringer, M.H., Illy, S., Jin, J., Kern, S., Rode, J.C., Thumm, M., 2009, Further design steps towards a 4 MW 170 GHz coaxial-cavity gyrotron, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, T4C04.0154.

  878. Beringer, M.H., Illy, S., Jin, J., Kern, S., Lievin, C., Thumm, M., 2010, Design of major components for a 4 MW 170 GHz coaxial-cavity gyrotron, Proc. 11th IEEE Int. Vacuum Electronics Conference (IVEC 2010), Monterey, USA, pp. 35-36.

  879. Beringer, M.H., Kern, S., Thumm, M., 2013, Mode selection and coaxial cavity design for a 4 MW 170 GHz gyrotron including thermal aspects. IEEE Trans. on Plasma Science, 41, No. 4, 853-861.

    Google Scholar 

  880. Franck, J., Avramidis, K., Gantenbein, G., Illy, S., Jin, J., Thumm, M., Jelonnek, J., 2015, Ageneric mode selection strategy for high-order mode gyrotrons operating at multiple frequencies. Nuclear Fusion, 55, 013005 (6 pp).

    Article  Google Scholar 

  881. Hargreaves, T.A., Fliflet, A.W., Fischer, R.P., Barsanti, M.L., 1990, Depressed collector performance on the NRL quasi-optical gyrotron. Conf. Digest 15th Int. Conf on Infrared and Millimeter Waves, Orlando, Proc., SPIE 1514, 330-332.

    Google Scholar 

  882. Nichiporenko, V., Popov, L., Myasnikov, V., Agapova, M., Belov, Yu., Gnedenkov, A., Ilyin, V., Irkhin, V., Kazansky, I., Kruglov, A., Rukavishnikova, V., Shamanova, N., Soluyanova, E., Tai, E., Usachev, S., Litvak, A., Chirkov, A., Denisov, G., Kuftin, A., Malygin, V., Zapevalov, V., Zohm, H., Stober, J., Wagner, D., Leuterer, F., Monaco, F., Munich, M., Schuetz, H., 2010, Multi-frequency gyrotron for ASDEX Upgrade, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Tu-P.05.

  883. Sakamoto, K., Kajiwara, K., Oda, Y., Takahashi, K., Hayashi, K., Kobayashi, N., 2012, Progress of high power multi-frequency gyrotron development, 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Tue-A-3-1.

  884. Anderson, J.P., Shapiro, M.A., Temkin, R.J., Mastovsky, I., 2003, Operation of a 1.5 MW, 110 GHz gyrotron experiment. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 171-172.

    Google Scholar 

  885. Anderson, J.P., Shapiro, M.A., Temkin, R.J., Mastovsky, I., 2004, Recent results for the 1.5-MW, 110-GHz gyrotron experiment. 5th IEEE Int. Vacuum Electronics Conf. (IVEC 2004), Monterey, CA, USA, 34-35.

  886. Anderson, J.P., Shapiro, M.A., Temkin, R.J., Mastovsky, I., 2004, Operation of a 1.5-MW, 110-GHz gyrotron depressed collector experiment. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 155-156.

    Google Scholar 

  887. Choi, E.M., Marchewka, C., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2005, Megawatt power level 120 GHz gyrotrons for ITER start-up. Journal of Physics: Conference Series, 25, 1-7.

    Google Scholar 

  888. Anderson, J.P., Shapiro, M.A., Temkin, R.J., Mastovsky, I., Cauffman, S.R., 2004, Studies of the 1.5-MW 110 GHz gyrotron experiment. IEEE Trans. on Plasma Science, 32, 877-883.

    Article  Google Scholar 

  889. Choi, E.M., Sirigiri, J.R., Shapiro, M.A., Temkin, R.J., 2005, Recent results from the 1.5 MW, 110 GHz gyrotron experiment at MIT. Proc. 6th IEEE Int. Vacuum Electronics Conf. (IVEC 2005), Noordwijk, The Netherlands, 115-116.

  890. Choi, E.M., Marchewka, C., Sirigiri, J.R., Shapiro, M.A., Temkin, R.J., 2005, Experimental results for a 1.5 MW, 110 GHz gyrotron with an improved cavity. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 241-242.

    Google Scholar 

  891. Choi, E.M., Cerfon, A.J., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2007, Efficiency enhancement of a 1.5-MW, 110-GHz gyrotron with a single-stage depressed collector. Fusion Science and Technology, 52, 334-339.

    Article  Google Scholar 

  892. Choi, E., Cerfon, A.J., Mastovsky, I., Mulligan, W., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2007, Experimental study of a 1.5 MW, 110 GHz gyrotron with a single-stage depressed collector. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 98-99.

    Google Scholar 

  893. Tax, D.S., Rock, B.Y., Fox, B.J., Jawla, S.K., Schaub, S.C., Shapiro, M.A., Temkin, R.J., Vernon,R.J., 2014, Experimental results for a pulsed 110/124.5-GHz megawatt gyrotron. IEEE Trans. on Plasma Science, 42, No. 5, 1128-1134.

  894. Marchesin, R., Alberti, S., Avramidis, K.A., Bertinetti, A., Dubray, J., Fasel, D., Gantenbein, G., Genoud, J., Hogge, J.-P., Illy, S., Jelonnek, J., Jin, J., Leggieri, A., Legrand, F., Marlétaz, B., Pagonakis, I.Gr., Savoldi, L., Thouvenin, P., Thumm, M., Tran, M.-Q., 2019, Manufacturing and test of the 1 MW, 84/126 GHz long pulse dual-frequency gyrotron for TCV tokamak. 20th Int. Vacuum Electronics Conference (IVEC 2019), April 28-May 1, 2019, Busan, South Korea.

  895. Ikeda, R., Oda, Y., Kobayashi, T., Kajiwara, K., Terakado, M., Takahashi, K., Moriyama, S., Sakamoto, K., 2017, Multi-frequency, MW-power triode gyrotron having a uniform directional beam. J Infrared Milli Terahz Waves, 38, 531-537.

    Article  Google Scholar 

  896. Kobayashi, T., Sawahata, M., Terakado, M., Hiranai, S., Sato, F., Wada, K., Hinata, J., Kajiwara, K., Oda, Y., Ikeda, R., Isayama, A., Takahashi, K., Moriyama, S., 2018, Development of ECH/CD system and preparation toward first plasma of JT-60SA. 20th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH) (EC20), May 14-17, 2018, Greifswald, Germany.

    Google Scholar 

  897. Igami, H., Kubo, S., Shimozuma, T., Yoshimura, Y., Takahashi, H., Tsujimura, T.I., Kobayashi, S., Mizuno, Y., Takubo, H., Tanaka, K., Yokoyama, M., Seki, R., Yamada, I., Yasuhara, R., Tsuchiya, H., Ida, K., Yoshinuma, M., Kobayashi, T., Ohdachi, S., Osakabe, M., Morisaki, T., LHD Experiment Group, 2018, Recent progress of the applications of ECRH/ECCD and the supportive technologies in the LHD. 20th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH) (EC20), May 14-17, 2018, Greifswald, Germany.

    Google Scholar 

  898. Häfner, H.E., Bojarsky, E., Norajitra, P., Reiser, 1992, H. Cryocooled windows for high frequency plasma heating. Fusion Technlogy 1992, eds. C. Ferro, M. Gasparotto, H. Knoepfel (Elsevier Science Publishers B.V. 1992), 520-523.

  899. Häfner, H.E., Bojarsky, E., Heckert, K., Norajitra, P., Reiser, H., 1994, Liquid nitrogen cooled window for high frequency plasma heating. Journal of Nuclear Materials, 212-215, 1035-1038.

    Article  Google Scholar 

  900. Häfner, H.E., Heckert, K., Norajitra, P., Vouriot, R. Hofmann, A., Münch, N., Nickel, H.-U., Thumm, M., Erckmann, V., 1994, Investigations of liquid nitrogen cooled windows for high power millimeter wave transmission. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 281-282.

    Google Scholar 

  901. Heidinger, R., Link, G., 1995, The mm-wave absorption in sapphire and its description by the 2-phonon model. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 16-17.

    Google Scholar 

  902. Norajitra, P., Häfner, H.E., Thumm, M., 1995, Alternatives for edge cooled single disk windows with 1 MW transmission power. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 475-476.

    Google Scholar 

  903. Saitoh, Y., Itoh, K., Yoshiyuki, T., Ebisawa, K., Yokokura, K., Nagashima, T., Yamamoto, T., 1992, Cryogenic window for millimeter-wave transmission. Fusion Technology 1992, eds. C. Ferro, M. Gasparotto, H. Knoepfel (Elsevier Science Publ. B.V. 1992), 632-636.

  904. Fix, A.S., Sushilin, P.B., 1993, Calculation and experimental investigation of cryogenic window. Proc. 5th Russian-German Meeting on ECRH and Gyrotrons, Karlsruhe, 389-392 and, 1994, Proc. 6th Russian-German Meeting on ECRH and Gyrotrons, Moscow, 1994, Vol.2, 244 247.

  905. Kasugai, A., Yokokura, K., Sakamoto, K., Tsuneoka, M., Yamamoto, T., Imai, T., Saito, Y., Ito, K. Yoshiyuki, T., Ebisawa, K., 1994, High power tests of the cryogenic window for millimeter wave. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 295-296.

    Google Scholar 

  906. Garin, P., Bon-Mardion, G., Pain, M., Heidinger, R., Thumm, M., Dubrovin, A., Giguet, E., Tran, C., 1995, Cryogenically cooled window: a new step toward gyrotron CW operation. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 271-272.

    Google Scholar 

  907. Parshin, V.V., Heidinger, R., Andreev, B.A., Gusev, A.V., Shmagin, V.B., 1995, Silicon with extra low losses for megawatt output gyrotron windows. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 22-23, and Parshin, V.V., 1998, private communication.

  908. Shimozuma, T., Sato, M., Takita, Y., Kubo, S., Idei, H., Ohkubo, K., Watari, T., Morimoto, S., Tajima, K., 1995, Development of elongated vacuum windows for high power CW millimeter waves. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 273-274.

    Google Scholar 

  909. Shimozuma, T., Morimoto, S., Sato, M., Takita, Y., Ito, S., Kubo, S., Idei, H., Okhubo, K., Watari, T., 1997, A forced gas-cooled single disk window for high power cw millimeter waves. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 146-147.

    Google Scholar 

  910. Petelin, M.I., Kasparek, W., 1991, Surface corrugation for broadband matching of windows in powerful microwave generators. Int. J. Electronics, 71, 871-873.

    Article  Google Scholar 

  911. Nickel, H.-U., Ambrosy, U., Thumm, M., 1992, Vacuum windows for frequency-tunable high-power millimeter wave systems. Conf. Digest 17th Int. Conf. on Infrared and Millimeter Waves, Pasadena, Proc., SPIE 1929, 462-463.

    Google Scholar 

  912. Nickel, H.-U., Massler, H., Thumm, M., 1993, Development of broadband vacuum windows for high-power millimeter wave systems. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 172-173.

    Google Scholar 

  913. Shang, C.C., Caplan, M., Nickel, H.-U., Thumm, M., 1993, Electrical analysis of wideband and distributed windows using time-dependent field codes. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 178-179.

    Google Scholar 

  914. Moeller, C.P., Doane, J.L., DiMartino, M., 1994, A vacuum window for a 1 MW CW 110 GHz gyrotron. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 279-280.

    Google Scholar 

  915. Shapiro, M.A., Moeller, C.P., Temkin, R.J., 2002, Electromagnetic analysis and cold test of a distributed window for a high power gyrotron. Int. J. Infrared and Millimeter Waves, 20, 533-542.

    Article  Google Scholar 

  916. Heidinger, R., 1994, Dielectric property measurements on CVD diamond grades for advanced gyrotron windows. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 277-278.

    Google Scholar 

  917. Heidinger, R., Schwab, R., Spörl, R., Thumm, M., 1997, Dielectric loss measurements in CVD diamond windows for gyrotrons. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 142-143.

    Google Scholar 

  918. Braz, O., Kasugai, A., Sakamoto, K., Takahashi, K., Tsuneoka, M., Imai, T., Thumm, 1997, High power 170 GHz test of CVD diamond for ECH window. Int. J. Infrared and Millimeter Waves, 18, 1495-1503.

  919. Thumm, M., 1998, Development of output windows for high-power long-pulse gyrotrons and EC wave applications. Int. J. Infrared and Millimeter Waves, 19, 3-14.

    Article  Google Scholar 

  920. Heidinger, R., Spörl, R., Thumm, M., Brandon, J.R., Sussmann, R.S., Dodge, C.N., 1998, CVD diamond windows for high power gyrotrons. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, U.K., 223-225.

    Google Scholar 

  921. Kasugai, A., Sakamoto, K., Takahashi, K., Tsuneoka, M., Kariya, T., Imai, T., Braz, O., Thumm, M., Brandon, J.R., Sussmann, R.S., Beale, A., Ballington, D.C., 1998, Chemical vapor deposition diamond for high-power and long-pulse millimeter wave transmission. Rev. Scientific Instruments, 69, 2160-2165.

    Article  Google Scholar 

  922. Thumm, M., Braz, O., Heidinger, R., Makowski, M., Spörl, R., 1999, Design and optimization of the ITER ECRF window unit. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, PS-5.

  923. Spörl, R., Heidinger, R., Schwab, R., 1999, Dielectric characterisation of CVD diamond windows at elevated tempertures. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, F-A9.

  924. Thumm, M., Alberti, S., Arnold, A., Borie, E., Dammertz, G., Erckmann, V., Garin, P., Giguet, E., Illy, S., Le Cloarec, G., Le Goff, Y., Magne, R., Michel, G., Piosczyk, B., Tran, M.Q., Wagner, D., 1999, 1 MW, 140 GHz, CW gyrotron for Wendelstein-7-X. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, Plenary W-2.

  925. Thumm, M., Arnold, A., Heidinger, R., Rohde, M., Schwab, R., Spoerl, R., 2001, Status report on CVD diamond window development for high power ECRH. Fusion Engineering and Design, 53, 517-524.

    Article  Google Scholar 

  926. Brandon, J.R., Coe, S.E., Sussmann, R.S., Sakamoto, K., Spoerl, R., Heidinger, R., Hanks, S., 2001, Development of CVD diamond r.f. windows for ECRH. Fusion Engineering and Design, 53, 553-559.

    Article  Google Scholar 

  927. Heidinger, R., Meier, A., Rohde, M., Spörl, R., Thumm, M., Arnold, A., 2000, Millimeter wave characterisation of large area MPACVD diamond windows. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 389-390.

  928. Petelin, M.I., 1999, Microwave applications of gratings. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 930-941.

    Google Scholar 

  929. Thumm, M., 2001, MPACVD-diamond windows for high-power and long-pulse millimeter wave transmission. Diamond and Related Materials, 10, 1692-1699.

    Article  Google Scholar 

  930. Heidinger, R., Meier, A., Thumm, M., 2001, Dielectric loss studies in diamond window components for megawatt gyrotrons. Proc. 2nd IEEE Int. Vacuum Electronics Conference (IVEC 2001), Noordwijk, Netherlands, 227-230.

  931. Heidinger, R., Meier, A., Thumm, M., Arnold, A., 2001, MPACVD diamond discs characterised as window components for megawatt gyrotrons. Proc. 9th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 165, 357-362.

    Google Scholar 

  932. Heidinger, R., Dammertz, G., Meier, A., Thumm, M.K., 2002, CVD diamond windows studied with low- and high-power millimeter waves. IEEE Trans. on Plasma Science, 30, 800-807.

    Article  Google Scholar 

  933. Yang, X., Wagner, D., Piosczyk, B., Koppenburg, K., Borie, E., Heidinger, R., Leuterer, F., Dammertz, G., Thumm, M., 2003, Analysis of transmission characteristics for single and double disk windows. Int. J. of Infrared and Millimeter Waves, 24, 619-628.

    Article  Google Scholar 

  934. Yang, X., Piosczyk, B., Heidinger, R., Thumm, M., 2003, A double disk window for the JET EP ECRH system. Fusion Engineering and Design, 66-68, 633-637.

    Article  Google Scholar 

  935. Yang, X., Borie, E., Dammertz, G., Heidinger, R., Koppenburg, K., Leuterer, F., Piosczyk, B., Wagner, D., Thumm, M., 2003, The influence of window parameters on the transmission characteristics of millimeter waves. Int. J. of Infrared and Millimeter Waves, 24, 1805-1813.

    Article  Google Scholar 

  936. Yang, X., Dammertz, G., Heidinger, R., Koppenburg, K., Leuterer, F., Meier, A., Piosczyk, B., Wagner, D., Thumm, M., 2005, Design of an ultra-broadband single-disk output window for a frequency step-tunable 1 MW gyrotron. Fusion Eng. and Design, 74, 489-493.

    Article  Google Scholar 

  937. Danilov, I., Heidinger, R., Meier, A., Thumm, M., 2004, Design and thermo-mechanical analysis of a double disk window for step-tuneable gyrotrons. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 301-304.

    Google Scholar 

  938. Takahashi, K., Illy, S., Heidinger, R., Kasugai, A., Minami, R., Sakamoto, K., Thumm, M., Imai, T., 2005, Development of reliable diamond window for EC launcher on fusion reactors. Fusion Eng. and Design, 74, 305-310.

    Article  Google Scholar 

  939. Danilov, I., Heidinger, R., Meier, A., Piosczyk, B., Schmid, M., Späh, P., Bongers, W., Graswinckel, M., Lamers, B., Verhoeven, A.G.A., 2007, High-power short-pulse, mechanical, and thermohydraulic tests of the window prototype for remote steering launcher. Fusion Science and Technology, 52, 250-255.

    Article  Google Scholar 

  940. Heidinger, R., Danilov, I., Meier, A., Piosczyk, B., Späh, P., Thumm, M., Bongers, W., Graswinckel, M., Henderson, M., Leuterer, F., Verhoeven, A.G.A., Wagner, D., 2007, Development of high power window prototypes or ECH&CD launchers, Fusion Engineering and Design, 82, 693-699.

    Article  Google Scholar 

  941. Heidinger, R., Danilov, I., Meier, A., Arnold, A., Flamm, J., Thumm, M., Leuterer, F., Stober, J., Wagner, D., 2007, Low power mm-wave transmission characteristics of a frequency tuneable double disk CVD-diamond, Conf. Digest Joint 32nd Int. Conf. on Infrared and Millimetre Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, pp. 877-879, Invited Paper.

  942. Flamm, J., Schlaich, A., Arnold, A., Prinz, O., Heidinger, R., Thumm, M., 2008, Characterization of windows for fusion applications using a D-band network analyzer, Proc. 33rd Int. Conf. on Infrared, Millim. and Terahertz Waves, Pasadena, CA, USA, T4A2.1535.

  943. Scherer, T.A., Heidinger, R., Meier, A., Strauss, D., Takahashi, K., Kajiwara, K., Sakamoto, K., 2008, Experimental and theoretical thermal analysis of CVD diamond window units for the ITER upper launcher, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, T5D32.1206.

  944. Belousov, V.I., Denisov, G.G., Filchenkov, S.E., Kovalev, N.F., Petelin, M.I., 2009, Broad band matched windows for gyrotrons, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, R3D06.0183.

  945. Yu, G., Dutta, J.M., Jones, C.R., 2004, Potentials of SiC as a gyrotron window material. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 299-300.

    Google Scholar 

  946. Dutta, J.M., Jones, C.R., Parshin, V.V., Garin, B., Polyakov, V.I., Rukovishnikov, A., 2008, Electrically active defects and dielectric loss in silicon carbide, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, M5D4.1629.

  947. Jones, C.R., Dutta, J., Yu, G., Gao, Y., 2011, Measurement of dielectric properties for low-loss materials at millimeter wavelengths, J. Infrared Milli Terahz Waves, 32, 838-847.

    Article  Google Scholar 

  948. Mocheneva, O.S., Parshin, V.V., 2006, The scattering of subMM waves by microcaverns in CVD-diamond windows. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 182.

  949. Scherer, T.A., Aiello, G., Grossetti, G., Meier, A., Schreck, S., Spaeh, P., Strauss, D., Vaccaro, A., Siegel, M., Meckbach, J.M., Scheuring, A., 2012, Reduction of surface losses of CVD diamond by passivation methods, 37th Int. Conf. on Infrared, Millimeter and Terahz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Tue-B-22.

  950. Ji, X., Du, C.-H., Liu, P.-K., 2018, Terahertz Brewster window for ultrabroadband gyrotron application. IEEE Microwave and Wireless Components Letters, 28, No. 10, 855-857.

    Google Scholar 

  951. Read, M., Lawrence Ives, R., Neilson, J., Tax, D., Temkin, R., Doane, J., 2012, A wide-band window in HE1,1 guide for gyrotrons, 37th Int. Conf. on Infrared, Millimeter and Terahz Waves (IRMMW-THz 2012), Wollongong, Australia, 2012, Tue-Pos-30.

  952. Ives, R.L., Read, M., Bui, T., Marsden, D., Collins, G., Guss, W., Temkin, R., Neilson, J., 2015, Development of a wide-band window in HE1,1 guide for gyrotrons. 40th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, W2E-5.

    Google Scholar 

  953. Read, M., Bui, T., Ives, R.L., Marsden, D., Collins, G., Guss, W., Temkin, R., Neilson, J., Yuri Gorelov, Y., Cengher, M., Moeller, C., LeViness, A., Lohr, J., 2016, Development of a wide-band window in HE1,1 guide for gyrotrons. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), Copenhagen, Denmark, W4C.1.

  954. Bohlen, H., Eisen, E., Felch, K., Jory, H., Lenci, S., Wright, E., 1998, New high-power microwave tubes for scientific industrial and broadcast applications. Proc. 8th ITG-Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 150, 248-256. Jory, H., 1997, Communications & Power Industries, Palo Alto, private communication.

  955. Zaytsev, N.I., Pankratova, T.P., Petelin, M.I., Flyagin, V.A., 1974, Millimeter- and submillimeter-wave gyrotrons. Radio Eng. and Electronic Phys., 19, 103-107.

    Google Scholar 

  956. Spira-Hakkarainen, S.E., Kreischer, K.E., Temkin, R.J., 1990, Submillimeter-wave harmonic gyrotron experiment. IEEE Trans. Plasma Science, 18, 334-342.

    Article  Google Scholar 

  957. Kreischer, K.E., Grimm, T.L., Guss, W.C., Temkin, R.J., Xu, K. Y, 1990, Research at MIT on high frequency gyrotrons for ECRH. Proc. Int. Workshop on Strong Microwaves in Plasmas, Suzdal, Inst. of Applied Physics, Nizhny Novgorod, 1991, 713-725.

  958. Kreischer, K., Farrar, C., Griffin, R., Temkin, R., Vieregg, J., 1999, The development of a 250 GHz cw gyrotron for EPR and NMR spectroscopy. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TU-A3.

  959. Yan, Y.Y., Fu, W.F., Li, X.L., Yuan, X.Y., Liu, S.L., 2010, Experimental results of a 0.42 THz harmonic gyrotron, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Th-P.50.

  960. Yan, Y., Li, X., Yuan, X., Fu, W., Liu, D., 2013, A 0.423 THz second harmonic gyrotron oscillator. Chinese Journal of Electronics, 22, No. 2, 415-418.

    Google Scholar 

  961. Fu, W., Guan, X., Chen, C., Li, X., Yuan, X., Yan, Y., 2014, Design and experiment of a 220/420-GHz gyrotron for nondestructive evaluation. IEEE Trans. on Electron Devices, 61, No. 6, 2531-2537.

    Google Scholar 

  962. Zhang, T., Zhao, Q., Yu, S., Yang, Y., Zhang, Y., 2016, The nonlinear simulation, design and experiments on 0.42 THz gyrotron with gradually tapered complex cavity. Vacuum, 125, 85-92.

    Article  Google Scholar 

  963. Zhao, A.Q., Yu, B.S., 2017, The nonlinear designs and experiments on a 0.42-THz second harmonic gyrotron with complex cavity. IEEE Trans. on Electron Devices, 64, No. 2, 564-570.

    Google Scholar 

  964. Zhao, Q., Yu, S., 2017, The influences of beam quality and Ohmic loss on the beam-wave interaction in a 420 GHz second-harmonic complex-cavity gyrotron. Europhysics Letters, 118, No. 3, 38002 (7 pp).

    Article  Google Scholar 

  965. Zhao, Q., Yu, S., 2017, Reflection influence on the operation of a 420 GHz second harmonic gyrotron with complex cavity. Vacuum, 145, 128-135.

    Article  Google Scholar 

  966. Idehara, T., Tatsukawa, T., Ogawa, I., Tanabe, H., Mori, T., Wada, S., Brand, G.F., Brennan, M.H., 1992, Development of a second cyclotron harmonic gyrotron operating at submillimeter wavelengths. Phys. Fluids B4, 267-273 and 1993, Phys. Fluids B5, 1377-1379.

    Google Scholar 

  967. Shimizu, Y., Makino, S., Ichikawa, K., Kanemaki, T. Tatsukawa, T., Idehara, T., Ogawa, I., 1995, Development of submillimeter wave gyrotron using 12 T superconducting magnet. Phys. Plasmas, 2, 2110-2116.

    Article  Google Scholar 

  968. Idehara, T., Shimizu, Y., Ichikawa, K., Makino, S., Shibutani, K., Kurahashi, K., Tatsukawa, T., Ogawa, I., Okazaki, Y., Okamoto, T., 1995, Development of a medium power, submillimeter wave gyrotron using a 17 T superconducting magnet. Phys. Plasmas, 2, 3246-3248.

    Article  Google Scholar 

  969. Idehara, T., Tatsukawa, T., Ogawa, I., Shimizu, Y., Kurahashi, K., Nishida, N., Yoshida, K., 1996, Development of terahertz gyrotron using a 17 T superconducting magnet. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, AT9.

  970. Idehara, T., Nishida, N., Yoshida, K., Ogawa, I., Tatsukawa, T., Wagner, D., Gantenbein, G., Kasparek, W., Thumm, M., 1998, High frequency and high mode purity operations of gyrotron FU IVA. Int. J. Infrared and Millimeter Waves, 19, 919-930.

    Article  Google Scholar 

  971. Idehara, T., Ogawa, I., Mitsudo, S., Pereyaslavets, M.L., Tsuchida, T., Ui, M., 1998, Development of a submillimeter wave gyrotron (gyrotron FU V). Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 398-399.

    Google Scholar 

  972. Idehara, T., Ogawa, I., Mitsudo, S., Pereyaslavets, M., Nishida, N., Yoshida, K., 1999, Development of frequency tunable, medium power gyrotrons (Gyrotron FU Series) as submillimeter wave radiation sources. IEEE Trans. on Plasma Science, 27, 340-354.

    Article  Google Scholar 

  973. Ogawa, I., Idehara, T., Iwata, Y., Pavlichenko, R., Mitsudo, S., Wagner, D., Thumm, M., 2002, High quality operation of high frequency gyrotron. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 293-294. Wagner, D., Gantenbein, G., Kasparek, W., Thumm, M., 1995, Improved gyrotron cavity with high quality factor. Int. J. Infrared and Millimeter Waves, 16, 1481-1489.

    Google Scholar 

  974. Idehara, T., Mitsudo, S., Pavlichenko, R., Ogawa, I., Wagner, D., Thumm, M., 2002, Development of submillimeter wave gyrotron FU series. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 116-128.

    Google Scholar 

  975. Idehara, T., Ogawa, I., Mitsudo, S., 2003, Present status of gyrotron FU series. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 251-252.

    Google Scholar 

  976. Ogawa, I., Idehara, T., Itakura, Y., Wagner, D., Thumm, M., 2003, High purity mode operation of gyrotron FU VA and generation of intense Gaussian beam. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 289-290.

    Google Scholar 

  977. Ogawa, I., Idehara, T., Itakura, Y., Hori, T., Wagner, D., Thumm, M., 2004, Conversion of gyrotron output into Gaussian beam and its application to plasma diagnostics. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 201-204.

    Google Scholar 

  978. Ogawa, I., Idehara, T., Sasagawa, H., Kimura, A., Mitsudo, S., Hori, T., Wagner, D., Thumm, M., 2004, High quality operation of gyrotron aiming toward the convenient radiation source in the submillimeter wave length range. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 371-374.

    Google Scholar 

  979. Idehara, T., Ogawa, I., Iwata, Y., Kanemaki, T., Ohashi, K., Kobayashi, H., Yokoyama, T., Glyavin, M., Sabchevski, S., 2003, Development of a large orbit gyrotron (LOG). Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 285-286.

    Google Scholar 

  980. Idehara, T., Ogawa, I., Mitsudo, S., Watanabe, S., Sato, N., Ohashi, K., Kobayashi, H., Yokoyama, T., Zapevalov, V., Glyavin, M., Kuftin, A., Malygin, O., Sabchevski, S., 2004, A high harmonic gyrotron and a gyro-peniotron with an axis-encircling electron beam and a permanent magnet. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 51-54.

    Google Scholar 

  981. Idehara, T., Watanabe, O., Kamada, M., Agusu, L., Yatsui, K., Jiang, W., Manuilov, V.N., Glyavin, M.Yu., 2004, Powerful large orbit gyrotron of submillimeter wavelength range. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 625-626.

    Google Scholar 

  982. Idehara, T., Ogawa, I., Mitsudo, S., Iwata, Y., Watanabe, S., Itakura, Y., Ohashi, K., Kobayashi, H., Yokoyama, T., Zapevalov, V.E., Glyavin, M.Yu., Kuftin, A.N., Malygin, O.V., Sabchevski, S.P., 2004, A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet. IEEE Trans. on Plasma Science, 32, 903-909.

    Article  Google Scholar 

  983. Idehara, T., Ogawa, I., Mitsudo, S., Iwata, Y., Watanabe, S., Itakura, Y., Ohashi, K., Kobayashi, H., Yokoyama, T., Zapevalov, V., Glyavin, M., Kuftin, A., Malygin, O., Sabchevski, S., 2005, Development of a high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet. Vacuum, 77, 539-546.

    Article  Google Scholar 

  984. Idehara, T., Ogawa, I., Mitsudo, S., Iwata, Y., Watanabe, S., Itakura, Y., Agusu, L., Ohashi, K., Kobayashi, H., Yokoyama, T., Zapevalov, V., Glyavin, M., Kuftin, A., Malygin, O., Sabchevski, S., 2005, Development of a large orbit gyrotron (LOG) operating at higher harmonics. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 525-526.

    Google Scholar 

  985. Bratman, V.L., Kalynov, Y.K., Manuilov, V.N., 2009, A 1-THz third-harmonic large-orbit gyrotron, Proc. 34th Int. Conf. Infrar, Milli and Terahz Waves, Busan, Korea, M4D01.0118.

  986. Bandurkin, I.V., Bratman, V.L., Kalynov, Yu.K., Osharin, I.V., Savilov, A.V., 2015, High-harmonic large orbit gyrotrons in IAP RAS. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, FS-58.

  987. Bandurkin, I.V., Kalynov, Yu.K., Savilov, A.V., 2016, Experimental study of a gyrotron with a sectioned klystron-type cavity operated at higher cyclotron harmonics. Radio Phys. and Quantum Electronics, 58, No. 9, 694-700.

    Google Scholar 

  988. Savilov, A.V., Bandurkin, I.V., Bratman, V.L., Kalynov, Yu.K., Osharin, I.V., 2017, Terahertz large-orbit high-harmonic gyrotrons at IAP RAS: Recent experiments and new designs. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, GIII-5.

  989. Bandurkin, I.V., Bratman, V.L., Kalynov, Yu.K., Osharin, I.V., Savilov, A.V., 2018, Terahertz large-orbit high-harmonic gyrotrons at IAP RAS: Recent experiments and new designs. IEEE Trans. on Electron Devices, 65, No. 6, 2287-2293.

    Google Scholar 

  990. Savilov, A., Bandurkin, I., Bratman, V., Kalynov, Yu., Manuilov, V., Osharin, I., Zavolsky, N., 2018, Terahertz large-orbit high-harmonic gyrotrons at IAP RAS: Features. Recent experiments and new designs. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, Tu-P2-R1-7.

  991. Savilov, A.V., Bandurkin. I.V., Glyavin, M,Yu., Kalynov, Yu.K., Oparina, Yu.S., Osharin, I.V., Zavolsky, N.A., 2018, High-harmonic gyrotrons with irregular microwave systems. EPJ Web of Conferences, 195, 01015 (2 pp).

  992. Xu, K.Y., Kreischer, K.E., Guss, W.C., Grimm, T.L., Temkin, R.J., 1990, Efficient operation of a megawatt gyrotron. Conf. Digest 15th Int. Conf. on Infrared and Millimeter Waves, Orlando, Proc., SPIE 1514, 324-326.

    Google Scholar 

  993. Grimm, T.L., Kreischer, K.E., Guss, W.C., Temkin, R.J., 1992, Experimental study of a megawatt 200-300 GHz gyrotron oscillator. Fusion Technology, 21, 1648-1657 and, 1993, Phys. Fluids, B5, 4135-4143.

  994. Grimm, T.L., Borchard, P.M., Kreischer, K.E., Guss, W.C., Temkin, R.J., 1992, High power operation of a 200-300 GHz gyrotron oscillator and multimegawatt gyrotrons for ITER. Conf. Digest 17th Int. Conf. on Infrared and Millimeter Waves, Pasadena, Proc., SPIE 1929, 190-191 and 194-195.

  995. Kimura, T., Danly, B.G., Kreischer, K.E., Temkin, R.J., 1995, Development of a 1 MW, 170 GHz gyrotron with internal mode converter. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 201-202.

    Google Scholar 

  996. Sirigiri, J.R., Kreischer, K.E., Machuzak, J., Mastovsky, I., Shapiro, M.A., Temkin, R.J., 2001, Photonic-band-gap resonator gyrotron. Phys. Rev. Lett., 86, 5628-5631.

    Article  Google Scholar 

  997. Choi, E.M., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2006, Experimental study of a high efficiency 1.5 MW, 110 GHz gyrotron. Proc. Int. Vacuum Electronics Conference and Int. Vacuum Electron Sources (IVEC/IVESC 2006), Monterey, California, USA, 417-418.

  998. Choi, E.M., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2006, Single-stage depressed collector experimental results from a 110 GHz 1.5 MW gyrotron at MIT. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 22.

  999. Choi, E.M., Marchewka, C.D., Mastovsky, I., Sirigiri, J.R., Shapiro, M.A., Temkin, R.J., 2006, Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition. Physics of Plasmas, 13, 023103-1-023103-7.

  1000. Hidaka, Y., Choi, E.M., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2008, Study of after cavity interaction in a high efficiency 1.5 MW, 110 GHz gyrotron, Proc. 9th IEEE Int. Vacuum Electronics Conference (IVEC 2008), Monterey, CA, USA, 66-67.

  1001. Hikada, Y., Choi, E.M., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2008, Effects of after cavity interaction in a 1.5 MW, 110 GHz gyrotron with a depressed collector, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, T2A4.1545.

  1002. Tax, D.S., Choi, E.M., Hidaka, Y., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Torrezan, A.C., Neilson, J., 2010, Operation of a 1.5 MW, 110 GHz gyrotron with an advanced internal mode converter, Proc. 11th IEEE Int. Vacuum Electronics Conference (IVEC 2010), Monterey, USA, pp. 313-314.

  1003. Tax, D.S., Choi, E.M., Mastovsky, I., Neilson, J.M., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Torrezan, A.C., 2011, Experimental results on a 1.5 MW, 110 GHz gyrotron with a smooth mirror mode converter, J. of Infrared Milli Terahz Waves, 32, 358-370.

    Article  Google Scholar 

  1004. Tax, D.S., Sinitsyn, O.V., Guss, W.C., Nusinovich, G.S., Shapiro, M.A., Temkin, R.J., 2013, Experimental study of the start-up scenario of a 1.5-MW, 110-GHz gyrotron, IEEE Trans. on Plasma Science, 41, No. 4, 862-871.

    Google Scholar 

  1005. Guss, W.C., Schaub, S.C., Tax, D.S., Jawla, S.K., Shapiro, M.A., Temkin, R.J., Neilson, J.M., Borchard, P., 2014, High power test of an internal coupler to corrugated waveguide for high power gyrotrons. Proc. 15th IEEE Int. Vacuum Electronics Conference (IVEC 2014), Monterey, CA, USA, P3.15.

  1006. Fu, W., Yan, Y., Li, X., Liu, S., 2010, The experiment of a 220 GHz gyrotron with a pulse magnet, J Infrared Milli Terahz Waves, 31, 404-410.

    Google Scholar 

  1007. Yuan, X., Zhu, W., Zhang, Y., Xu, N., Yan, Y., Wu, J., Shen, Y., Chen, J., She, J., Deng, S., 2016, A fully-sealed carbon-nanotube cold-cathode terahertz gyrotron, Scientific Reports, 6, 32936.

    Article  Google Scholar 

  1008. Saito, T., Tanaka, S., Shinbayashi, R., Hirobe, T., Yamaguchi, Y., Fukunari, M., Tatemetsu, Y., Ohkubo, K., Kubo, S., Shimozuma, T., Tanaka, K., Nishiura, M., 2018, Developments of equipment for sub-THz Collective Thomson Scattering in LHD. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, Tu-P2-R1-2.

  1009. Brand, G.F., Fekete, P.W., Hong, K., Moore, K.J., Idehara, T., 1990, Operation of a tunable gyrotron at the second harmonic of the electron cyclotron frequency. Int. J. Electronics, 68, 1099-1111.

    Article  Google Scholar 

  1010. Hong, K.D., Brand, G.F., 1993, A 150-600 GHz step-tunable gyrotron. J. Appl. Phys., 74, 5250-5258.

    Article  Google Scholar 

  1011. Idehara, T., Kamada, M., Tsuchiya, H., Hayashi, T., Agusu, La, Mitsudo, S., Ogawa, I., Manuilov, V.N., Naito, K., Yuyama, T., Jiang, W., Yatsui, K., 2005, Development of an ultra high frequency gyrotron with a pulsed magnet. Proc. 7th Workshop on High Energy Density and High Power RF, AIP Conference Proceedings 807, 2006, 197-205.

  1012. Idehara, T., Tsuchiya, H., L. Agusu, Mori, H., Murase, H., Watanabe, O., Saito, T., Ogawa, I., Mitsudo, S., 2006, Development of a THz gyrotron. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 509.

  1013. Idehara, T., Tsuchiya, H., Agusu, La, Mitsudo, S., Murase, H., Mori, H., Kanemaki, T., Saito, T., 2006, Development of a THz gyrotron with 20 T pulsed magnet. Journal of Physics: Conference Series, 51, 553-556.

    Google Scholar 

  1014. Idehara, T., Tsuchiya, H., Agusu, L., Mori, H., Murase, H., Saito, T., Ogawa, I., Mitsudo, S., 2007, Development of CW THz gyrotrons in FIR FU, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 341-342.

  1015. Agusu, L., Tsuchiya, H., Mori, H., Idehara, T., Saito, T., Ogawa, I., Mitsudo, S., 2007, The experimental results and theoretical analysis of a THz gyrotron using a 21 T pulse magnet at FIR FU, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 343-344.

  1016. Idehara, T., Tsuchiya, H., Agusu, L., Mori, H., Murase, H., Saito, T., Ogawa, I., Mitsudo, S., 2007, The 1 THz gyrotron at Fukui University. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 309-311.

    Google Scholar 

  1017. Denisov, G.G., Antakov, I.I., Gachev, I.G., Lygin, V.K., Sokolov, E.V., Zasypkin, E.V., 2005, Studying of the 95/285 GHz gyrotron with frequency multiplication. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 435-436.

    Google Scholar 

  1018. Bandurkin, I.V., Bratman, V.L., Denisov, G.G., Savilov, A.V., 2005, Frequency multiplication in gyro-oscillators. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 156-161.

    Google Scholar 

  1019. Antakov, I.I., Gachev, I.G., Denisov, G.G., Lygin, V.K., Zasypkin, E.V., 2005, Development and experimental study of a two-cavity 285 GHz CW gyrotron-multiplier. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2006, Vol. 1, 162-166.

    Google Scholar 

  1020. Bandurkin, I.V., Bratman, V.L., Denisov, G.G., Gachev, I.G., Kalynov, Yu.K., Savilov, A.V., 2006, New schemes of high-harmonic gyro-devices with frequency multiplication. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 83.

  1021. Bandurkin, I.Y., Bratman, V.L., Kalynov, Y.K., Manuilov, V.N., Samsonov, S.V., Savilov, A.V., 2008, Terahertz high-harmonic gyrotrons and gyro-multipliers, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, M2A4.1449.

  1022. Bandurkin, I.V., Bratman, V.L., Savilov, A.V., Samsonov, S.V., Volkov, A.B., 2009, Progress in studying a self-excited gyromultiplier, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, M4D02.0342.

  1023. Bandurkin, I.V., Bratman, V.L., Savilov, A.V., Samsonov, S.V., Volkov, A.B., 2009, Experimental study of a fourth-harmonic gyromultiplier, Physics of Plasmas, 16, 070701-1-3.

    Google Scholar 

  1024. Bandurkin, I.V., Kalynov, Yu.K., Savilov, A.V., 2010, High-harmonic gyrotron with sectioned cavity. Physics of Plasmas, 17, 073101 (8 pp).

    Article  Google Scholar 

  1025. Bandurkin, I.V., Kalynov, Yu.K., Savilov, A.V., 2014, High-harmonic sectioned gyrotron. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 215-216.

  1026. Bandurkin, I.V., Kalynov, Yu.K., Savilov, A.V., 2015, Experimental realization of the high-harmonic gyrotron oscillator with a klystron-like sectioned cavity. IEEE Trans. on Electron Devices, 62, No. 7, 2356-2359.

    Google Scholar 

  1027. Antakov, I.I., Gachev, I.G., Kurbatov, V.I., Sokolov, E.V., Solujanova, E.A., Zasypkin, E.V., 1996, A Ka-band 10 kW CW efficient compact gyrotron for materials processing. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, AM3.

  1028. Antakov, I.I., Gachev, I.G., Kurbatov, V.I., Sokolov, E.V., Solujanova, E.A., Zasypkin, E.V., 1996, Ka-band and W-band 10 kW CW high efficiency gyrotrons for materials processing. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 679-687.

    Google Scholar 

  1029. Flyagin, V.A., Kuftin, A.N., Lygin, V.K., Luchinin, A.G., Malygin, O.V., Manuilov, V.N., Tsimring, Sh.E., Zapevalov, V.E., 1996, CW 10 kW technological gyrotron in the range 15-50 GHz. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 711-716.

    Google Scholar 

  1030. Zasypkin, E.V., Antakov, I.I., Gachev, I.G., Vlasov, S.N., Sokolov, E.V., 1998, Continuously tunable 35-190 GHz powerful gyrotrons at GYCOM. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 323-324.

    Google Scholar 

  1031. Zasypkin, E.V., Moiseev, M.A., Nemirovskaya, L.L., 1998, Expansion of a frequency tuning band in a gyrotron with coupled cavities. Int. J. Electronics, 85, 207-216.

    Article  Google Scholar 

  1032. Möbius, A., 1995, A permanent magnet system for gyrotrons. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 487-488.

    Google Scholar 

  1033. Glyavin, M., Goldenberg, A., Flyagin, V., Kuftin, A., Luchinin, A., Lygin, V., Malygin, O., Manuilov, V., Moiseev, M., Zavolsky, N., Zapevalov, V., 1999, Experimental investigation of technological gyrotrons. Proc. Int. University Conf. “Electronics and Radiophysics of Ultra-High Frequencies” (UHF-99), 1999, St. Petersburg, Russia, 112.

  1034. Bykov, Yu., Glyavin, M., Goldenberg, A., Luchinin, A., Lygin, V., Zavol'skii, N., 1999, Efficient 24-30 GHz CW gyrotrons for technological applications. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2000, Vol. 2, 747-750.

    Google Scholar 

  1035. Bykov, Y., Glyavin, M., Denisov, G., Holoptsev, V., Eremeev, A., Plotnikov, I., Pavlov, V., 2001, 3.5 kW 24 GHz compact gyrotron system for microwave processing of materials. Proc. 8th Int. Conf. on Microwave and High Frequency Heating, Bayreuth, 89.

  1036. Denisov, G.G., Bykov, Yu.V., Eremeev, A.G., Holoptsev, V.V., Glyavin, M.Yu., Luchinin, A.G., Kalynova, G.I., Plotnikov, I.V., Samsonov, S.V., 2005, Development of gyrotron-based technological systems at Gycom / IAP. Conf. Digest 30th Int. Conf. Infrared and Milli Waves and 13th Int. Conf. Terahertz Electronics, Williamsburg, VA, USA, 28-29.

  1037. Morozkin, M.V., Glyavin, M.Yu., Denisov, G.G., Luchinin, A.G., 2008, A high-efficiency second-harmonic gyrotron with a depressed collector. Int. J. Infrared and Millimeter Waves, 29, 1004-1010.

    Article  Google Scholar 

  1038. Bykov, Yu.V., Denisov, G.G., Glyavin, M.Yu., Goldenberg, A.L., Luchinin, A.G., Morozkin, M.V., Sobolev, D.I., 2008, The second harmonic gyrotron with record efficiency, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 1, pp. 134-138.

  1039. Glyavin, M.Yu., Denisov, G.G., Luchinin, A.G., Morozkin, M.V., Sobolev, D.I., 2009, Experimental study of a gyrotron operated at the second gyrofrequency harmonic with the single-stage energy recovery, Radiophysics and Quantum Electronics, 51, 768-771.

    Article  Google Scholar 

  1040. Glyavin, M.Yu., Luchinin, A.G., Morozkin, M.V., 2011, Technological gyrotron with the wide-band fast frequency sweeping, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 107-108.

  1041. Glyavin, M., Luchinin, A., Morozkin, M., 2012, The Ka-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep. Rev. Scientific Inst., 83, 074706 (3 pp).

    Article  Google Scholar 

  1042. Tsvetkov, A.I., Denisov, G.G., Bykov, Y.V., Glyavin, M.Y., Eremeev, A.G., Kholoptsev, V.V., Morozkin, M.V., Shmelev, M.Y., Sobolev, D.I., Chirkov, A.V., Tai, E.M., Soluyanova, E.A., Bakulin, M.I., 2016, 45 GHz/20 kW gyrotron-based system for ECR ion source. 43rd IEEE Int. Conf. on Plasma Science, June 19-23, Banff, Canada, 1P-24.

  1043. Malygin, A., Illy, S., Pagonakis, I., Avramidis, K., Thumm, M., Jelonnek, J., Ives, L., Collins, G., 2014, Experimental investigations of a 15 kW/28 GHz second harmonic CW gyrotron designed for evaluation of new emitter technologies. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, July 24-30, 2014, Nizhny Novgorod, Russia, pp. 162-163.

  1044. Huey, H., 2010, Micramics, Inc., San Jose, CA, USA, private communication.

  1045. Kikunaga, T., Asano, H., Hemmi, K., Sato, F., Tsukamoto, T., 1995, A 28 GHz gyrotron with a permanent magnet system. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 485-486.

    Google Scholar 

  1046. Takada, T., Ohashi, K., Honshima, M., Kikunaga, T., 1995, Nd-Te-B permanent magnet circuit for a 28 GHz CW gyrotron. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 489-490.

    Google Scholar 

  1047. Asano, H., Kikunaga, K., Hemmi, K., Sato, F., Tsukamoto, T., 1996, A 28 GHz gyrotron with a permanent magnet system for industry applications. Proc. 21st Int. Conf. on Infrared and Millimeter Waves, Berlin, AM5.

  1048. Wang, W., Yu, G., Xu, M., Gong, Y., 2003, 8 mm TE13 mode gyrotron. Int. J. of Infrared and Millimeter Waves, 24, 661-668.

    Article  Google Scholar 

  1049. Zapevalov, V.E., Lygin, V.K., Malygin, O.V., Moiseev, M.A., Khizhnjak, V.I., Karpov, V.P., Tai, E.M., Idehara, T., Ogawa, I., Mitsudo, S., 2005, Development of the 300 GHz/ 4 kW/CW gyrotron. Proc. 6th IEEE Int. Vacuum Electronics Conf. (IVEC 2005), Noordwijk, The Netherlands, 121-122.

  1050. Hoshizuki, H., Matsuura, K., Mitsuso, S., Idehara, T., Malygin, O.V., Khizhnjak, V.I., Zapevalov, V.E., Ueda, T., Furuiti, M., Kitano, A., Nishi, H., Ishibashi, J., 2005, Development of the material processing system by using a 300 GHz gyrotron. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 375-376.

    Google Scholar 

  1051. Zapevalov, V.E., Lygin, V.K., Malygin, O.V., Moiseev, M.A., Karpov, V.P., Khizhnjak, V.I., Tai, E.M., Idehara, T., Ogawa, I., Mitsudo, S., 2005, Development of the 300 GHz/ 4 kW/CW gyrotron. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 167-172.

    Google Scholar 

  1052. Saito, T., Idehara, T., Mitsudo, S., Ogawa, I., Hoshizuki, H., Murase, H., Sakai, K., Zapevalov, V.E., Malygin, O.V., Khizhnjak, V.I., Karpov, V.P., Tai, E.M., 2006, Oscillation characteristics of CW 300 GHz gyrotron FU CWI. Conf. Digest 31st Int. Conf. Infrared and Millimeter Waves and 14th Int. Conf. Terahertz Electronics, Shanghai, China, 24.

  1053. Mitsudo, S., Sakai, K., Idehara, T., Saito, T., 2006, 300 GHz gyrotron material processing system. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 572.

  1054. Saito, T., Nakano, T., Hoshizuki, H., Sakai, K., Tatematsu, Y., Mitsudo, S., Ogawa, I., Idehara, T., Zapevalov, V.E., 2007, Performance test of CW 300 GHz gyrotron FU CW I. Int. J. Infrared and Millimeter Waves, 28, 1063-1078.

    Article  Google Scholar 

  1055. Saito, T., Nakamo, T., Tatematsu, Y., Mitusdo, S., Idehara, T., Zapevalov, V.E., 2008, Operation improvement of CW 300 GHz gyrotron FU CWI, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, F2A3.1207.

  1056. Zapevalov, V.E., Lygin, V.K., Malygin, O.V., Moiseev, M.A., Khizhnyak, V.I., Karpov, V.P., Tai, E.M., Idehara, T., Mitsudo, S., Ogawa, I., Saito, T., 2007, High-power oscillator of continuous electromagnetic radiation with a frequency of 300 GHz, Radiophysics and Quantum Electronics, 50, 420-428.

    Article  Google Scholar 

  1057. Bratman, V.L., Ginzburg, N.S., Nusinovich, G.S., Petelin, M.I., Strelkov, P.S., 1981, Relativistic gyrotrons and cyclotron autoresonance masers. Int. J. Electron., 51,541-567.

    Article  Google Scholar 

  1058. Bratman, V.L., Denisov, G.G., Ofitserov, M.M., Korovin, S.D., Polevin, S.D., Rostov, V.V., 1987, Millimeter-wave HF relativistic electron oscillators. IEEE Trans. on Plasma Science, 15, 2-15.

    Article  Google Scholar 

  1059. Zaitsev, N.I., Ginzburg, N.S., Zavolskii, N.A., Zapevalov, V.E., Ilyakov, E.V., Kulagin, I.S., Kuftin, A.N., Lygin, V.K., Moiseev, M.A., Novozhilova, Yu.V., Rozental, R.M., Tsalolokhin, V.I., 2001, Highly efficient relativistic SHF gyrotron with a microsecond pulse width. Tech. Phys. Lett., 27, 266-270.

    Article  Google Scholar 

  1060. Zaitsev, N.I., Ginzburg, S., Ilyakov, E.V., Kulagin, I.S., Lygin, V.K., Manuilov, V.N., Moiseev, M.A., Rosenthal, R.M., Zapevalov, V.E., Zavolsky, N.A., 2002, X-band high-efficiency relativistic gyrotron. IEEE Trans. on Plasma Science, 30, 840-845.

    Article  Google Scholar 

  1061. Ilyakov, E.V., Kulagin, I.S., Kuzikov, S.V., Lygin, V.K., Manuilov, V.N., Moiseev, M.A., Petelin, M.I., Rozental, R.M., Zaitsev, N.I., Zapevalov, V.E., Zavolsky, N.A., 2003, 10-MW, Ka-band gyrotron. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 325-326.

    Google Scholar 

  1062. Ilyakov, E., Krasnykh, A., Kulagin, I., Kuzikov, S., Lygin, V., Moiseev, M., Petelin, M., Zaitsev, N., 2004, Ka band – 10 MW gyro-devices: an experiment and a project. 5th IEEE Int. Vacuum Electronics Conf. (IVEC 2004), Monterey, CA, USA, 61-62.

  1063. Zaitsev, N.I., Zavolsky, N.A., Zapevalov, V.E., Ilyakov, E.V., Kulagin, I.S., Lygin, V.K., Moiseev, M.A., Nechaev, V.E., Petelin, M.I., Rozental, R.M., 2003, Ten-megawatt pulsed gyrotron with a 1-cm wavelength and a 50% efficiency. Radiophysics and Quantum Electronics, 46, 816-819.

    Article  Google Scholar 

  1064. Rozental, R.M., Zaitsev, N.I., Kulagin, I.S., Ilyakov, E.V., Ginzburg, N.S., 2004, Nonstationary Processes in an X-band relativistic gyrotron with delayed feedback. IEEE Trans. on Plasma Science, 32, 418-421.

    Article  Google Scholar 

  1065. Abubakirov, E.B., Chirkov, A.V., Denisov, G.G., Guznov, Y.M., Kornishin, S.Y., Leontyev, A.N., Plankin, O.P., Rozental, R.M. Sedov, A.S., Semenov, E.S., Tarakanov, V.P., Zavolsky, N.A., Zapevalov, S.A., Zapevalov, V.E., 2017, W-band 5 MW pulsed relativistic gyrotron. IEEE Trans. on Electron Devices, 64, No. 4, 1865-1867.

    Google Scholar 

  1066. Leontyev, A.N., Abubakirov, E.B., Chirkov, A.V., Denisov, G.G., Guznov, Yu.M., Kornishin, S.Yu., Plankin, O.P., Rozental R.M., Sedov, A.S., Semenov, E.S., Zavolsky N.A., Zapevalov, S.A., Zapevalov, V.E., 2017, W-band 5 MW pulse relativistic gyrotron: development and experimental implementation. EPJ Web of Conferences, 149, 04026 (2 pp).

    Article  Google Scholar 

  1067. Zavolsky N.A., Ilyakov, E.V., Kalynov, Yu.K., Kulagin, I.S., Manuilov, V.N., Shevchenko, A.S., 2018, High-power relativistic millimeter-wave relativistic gyrotron operating at the second cyclotron harmonic. Radiophysics and Quantum Electronics, 61, No. 1, 40-47.

    Google Scholar 

  1068. Krementsov, V.I., Petelin, M.I., Rabinovich, M.S., Rukhadze, A.A., Strelkov, P.S., Shkvarunets, A.G., 1978, Plasma-filled gyrotron with a relativistic supervacuum electron beam. Sov. Phys. JETP, 48, 1084-1085.

    Google Scholar 

  1069. Ginzburg, N.S., Krementsov, V.I., Petelin, M.I., Strelkov, P.S., Shkvarunets, A.G., 1979, Experimental investigation on a high-current relativistic cyclotron maser. Sov. Phys. Tech. Phys., 24, 218-222.

    Google Scholar 

  1070. Voronkov, S.N., Krementsov, V.I., Strelkov, P.S., Shkvarunets, A.G., 1982, Stimulated cyclotron radiation and millimeter wavelengths from high-power relativistic electron beams. Sov. Phys. Tech. Phys., 27, 68-69.

    Google Scholar 

  1071. Kolyada, Yu.E., Fainberg, Ya.B., Kornilov, E.A., Ognivenko, V.V., Kiyashko, V.A., 1976, Interaction of a high-current electron beam with a plasma in open cavity in a mirror system. Sov. Tech. Phys. Lett., 2, 348-350.

    Google Scholar 

  1072. Gilgenbach, R.M., Wang, J.G., Choi, J.J., Outten, C.A., Spencer, TA, 1988, Intense electron beam cyclotron masers with microsecond pulse lengths. Conf. Digest 13th Int. Conf. on Infrared and Millimeter Waves, Honolulu, Hawaii, Proc., SPIE 1039, 362-363.

    Google Scholar 

  1073. Gilgenbach, R.M., Hochman, J.M., Jaynes, R. Walter, M.T., Rintamaki, J., Lash, J.S., Luginsland, J., Lau, Y.Y., Spencer, T.A., 1995, Rectangular interaction structures in high power gyrotron devices. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 528-529.

    Google Scholar 

  1074. Hochman, J.M., Gilgenbach, R.M., Jaynes, R.L., Rintamaki, J.I., Lau, Y.Y., Spencer, T.A., 1997, High power microwave emission of large and small orbit rectangular cross section gyrotrons. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 315-316.

    Google Scholar 

  1075. Hochman, J.M., Gilgenbach, R.M., Jaynes, R.L., Rintamaki, J.I., Lau, Y.Y., Cohen, W.E., Peters, C.W., Spencer, T.A., 1998, Polarization control of microwave emission from high power rectangular cross-section gyrotron devices. IEEE Trans. Plasma Scien., 26, 383-392.

    Article  Google Scholar 

  1076. Jaynes, R.L., Gilgenbach, R.M., Cohen, W.E., Lopez, M.R., Peters, C.W., Hochman, J.M., Lau, J.J., Spencer, T.A., 1999, High power microwave production in a coaxial, large orbit, axis encircing gyrotron oscillator. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TU-A4.

  1077. Jaynes, R.L., Gilgenbach, R.M., Peters, C.W., Cohen, W.E., Lopez, M.R., Lau, Y.Y., Williams, W.J., Spencer, T.A., 2000, Long-pulse, high-power, large-orbit, coaxial gyrotron oscillator experiments. IEEE Trans. on Plasma Science, 28, 945-952.

    Article  Google Scholar 

  1078. Gilgenbach, R.M., Jaynes, R.L., Cohen, W.E., Peters, C.W., Lopez, M.R., Lau, Y.Y., Williams, W.J., Spencer, T.A., 2000, Experiments on slotted, coaxial, high power gyrotrons. Conf. Digest Intense Microwave Pulses VII., Orlando, Florida, USA, SPIE-4031, 8-18.

    Google Scholar 

  1079. Granatstein, V.L., Herndon, M., Sprangle, P., Carmel, Y., Nation, J.A., 1975, Gigawatt microwave emission from an intense relativstic electron beam. Plasma Physics, 17, 23-28.

    Article  Google Scholar 

  1080. Gold, S.H. Fliflet, A.W., Manheimer, W.M., McCowan, R.B., Black, W.M., Lee, R.C., Granatstein, V.L., Kinkead, A.K., Hardesty, D.L., Sucy, M., 1987, High peak power Ka-band gyrotron oscillator experiment. Phys. Fluids, 30, 2226-2238.

    Article  Google Scholar 

  1081. Gold, S.H., Fliflet, A.W., Manheimer, W.M., McCowan, R.B., Lee, R.C., Granatstein, V.L., Hardesty, D. L, Kinkead, A.K., Sucy, M., 1988, High peak power Ka-band gyrotron oscillator experiments with slotted and unslotted cavities. IEEE. Trans. Plasma Science, 16, 142, and, Gold, S.H., 1998, private communication.

  1082. Black, W.M., Gold, S.H., Fliflet, A.W., Kirkpatrick, D.A., Manheimer, W.M., Lee, R.C., Granatstein, V.L., Hardesty, D.L., Kinkead, A.K., Sucy, M., 1990, Megavolt Multikiloamp Ka-band gyrotron oscillator experiment. Phys. Fluids, B2, 193.

    Article  Google Scholar 

  1083. Didenko, A.N., Zherlitsyn, A.G., Zelentsov, V.I., Sulakshin, A.S., Fomenko, G.P., Shtein, Yu.G., Yushkov, Yu.G., 1976, Generation of gigawatt microwave pulses in the nanosecond range. Sov. J. Plasma Phys., 2, 283-285.

    Google Scholar 

  1084. Minami, K., Hayatsu, Y., Sato, T., Sanmonji, M., Granatstein, V.L., 2002, Experiment on a cold cathode gyrotron. 29th IEEE Int. Conf. on Plasma Science (ICOPS 2002), Banff, Canada, May 26-30, 3P09.

  1085. Cross, A.W., Spark, S.N., Phelps, A.D.R., 1988, Gyrotron experiments using cavities of different ohmic Q. Conf. Digest 17th Int. Conf. on Infrared and Millimeter Waves, Pasadena, Proc., SPIE 1929, 392-393.

    Google Scholar 

  1086. Cross, A.W., Spark, S.N., Phelps, A.D.R., 1995, Gyrotron experiments using cavities of different ohmic Q. Int. J. Electronics, 79, 481-493.

    Article  Google Scholar 

  1087. Cross, A.W., MacGregor, S.J., Phelps, A.D.R., Ronald, K., Spark, S.N., Turnbull, S.M., 1995, Megawatt, 1 kHz PRF tunable gyrotron experiments. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 530-531.

    Google Scholar 

  1088. Ronald, K., Cross, A.W., Phelps, A.D.R., He, W., 2001, Observations of dynamic behaviour in an electron cyclotron maser oscillator. Appl. Phys., 34, L17-L22.

    Google Scholar 

  1089. Ronald, K., Phelps, A.D.R., Cross, A.W., He, W., 2001, Observations of non-stationary behaviour in electron cyclotron masers. Proc. 9th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 165, 159-162.

    Google Scholar 

  1090. Ronald, K., Cross, A.W., Phelps, A.D.R, He, W., Whyte, C.G., Thomson, R., Rafferty, E., 2003, ECM automodulation experiments. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 255-256.

  1091. Bratman, V.L., Kalynov, Yu.K., Kolganov, N.G., Manuilov, V.N., Ofitserov, M.M., Savilov, A.V., Samsonov, S.V., Volkov, A.B., 1996, Cyclotron autoresonance masers and relativistic gyrotrons. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 745-761.

    Google Scholar 

  1092. Bratman, V.L., Kalynov, Yu.K., Ofitserov, M.M., Samsonov, S.V., Savilov, A.V., 1997, CARMs and relativistic gyrotrons as effective sources and millimeter and submillimeter waves. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 58-60.

    Google Scholar 

  1093. Bratman, V.L., Fedotov, A.E., Kalynov, Yu.K., Manuilov, V.N., Ofitserov, M.M., Samsonov, S.V., Savilov, A.V., 1998, Gyrotron on the 5th cyclotron harmonic. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 325-326.

    Google Scholar 

  1094. Bratman, V.L., Fedotov, A.E., Kalynov, Y.K., Manuilov, V.N., Ofitserov, M.M., Samsonov, V., Savilov, A.V., 1999, Moderately relativistic high-harmonic gyrotrons for millimeter/ submillimeter wavelength band. IEEE Trans. on Plasma Science, 27, 456-461, and private communications, 2002.

  1095. Bratman, V.L., Dumesh, B.S., Fedotov, A.E., Manuilov, V.N., Kalynov, Yu.K., Ofitserov, M.M., Rusin, F.S., Samsonov, S.V., 2002, Powerful sources of coherent submillimeter-wave radiation. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 135-143.

    Google Scholar 

  1096. Bratman, V.L., Dumesh, B.S., Fedotov, A.E., Grishin, Yu.A., Kalynov, Yu.K., Manuilov, V.N., Rusin, F.S., Samsonov, S.V., 2004, New sources of coherent submillimeter-wave radiation. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 193-194.

    Google Scholar 

  1097. Bratman, V.L., Kalynov, Yu.K., Manuilov, V.N., Samsonov, S.V., 2005, Large orbit gyrotron at submillimeter waves. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 443-444.

    Google Scholar 

  1098. Bratman, V.L., Kalynov, Yu.K., Manuilov, V.N., Samsonov, S.V., 2005, Large-orbit gyrotron operation at submillimeter waves. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 150-155.

    Google Scholar 

  1099. Bratman, V.L., Bandurkin, I.V., Dumesh, B.S., Fedotov, A.E., Kalynov, Y.K., Kolganov, N.G., Manuilov, V.N., Rusin, F.S., Samsonov, S.V., Savilov, A.V., 2005, Sources of coherent terahertz radiation. Proc. 7th Workshop on High Energy Density and High Power RF, AIP Conference Proceedings 807, 2006, 356-366.

  1100. Jiang, W., 2013, High power Microwave Source Development in Nagaoka University of Technology. Proc. Int. Symp. on Development of terahertz gyrotrons and applications. Fukui, Japan, 15A-6.

  1101. Hogge, J.P., Cao, H., Kasparek, W., Tran, T.M., Tran, M.Q., Paris, P.J., 1991, Ellipsoidal diffraction grating as output coupler for quasi-optical gyrotrons. Conf. Digest 16th Int. Conf. on Infrared and Millimeter Waves, Lausanne, Proc., SPIE 1576, 540-541.

    Google Scholar 

  1102. Vlasov, S.N. Koposova, E.V., Pavelyev, A.B., Khizhnyak, V.I. 1996, Gyrotrons with echelette resononators. Radiophys. and Quantum Electronics, 39, 458-462.

    Article  Google Scholar 

  1103. Hu, W., Shapiro, M.A., Kreischer, K.E., Temkin, R.J., 1997, 140 GHz confocal cavity gyrotron experiment. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 116-117.

    Google Scholar 

  1104. Hu, W., Shapiro, M.A., Kreischer, K.E., Temkin, R.J., 1998, 140-GHz gyrotron experiments based on a confocal cavity. IEEE Trans. on Plasma Science, 26, 366-374.

    Article  Google Scholar 

  1105. Gapochka, M.G., Korolev, A.F., Kostienko, A.I., Sukhorukov, A.P., Sheludchenkov, A.V., Golenitski, I.I., Evtushenko, O.V., Pulino, A., 1996, Compact low-voltage quasioptical millimeter-wave generators. Proc. 25th European Microwave Conf., Prague, 144-145.

  1106. Fliflet, A.W., Hargreaves, T.A., Fischer, R.P., Manheimer, W.M., Sprangle, P., 1990, Review of quasi-optical gyrotron development. J. Fusion Energy, 9, 31-58.

    Article  Google Scholar 

  1107. Fischer, R.P., Fliflet, A.W., Manheimer, W.M., Levush, B., Antonsen Jr., T.M., 1993, Mode priming an 85 GHz quasioptical gyroklystron. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 330-331.

    Google Scholar 

  1108. Guan, X., Fu, W., Yan, Y., 2017, A 0.4-THz second harmonic gyrotron with quasi-optical confocal cavity. J Infrared Milli Terahz Waves, 38, 1457-1470.

    Article  Google Scholar 

  1109. Fu, W., Guan, X., Yan, Y., Li, X., Huang, Y., Meng, L., 2017, Harmonic terahertz gyrotron with quasi-optical confocal cavity. EPJ Web of Conferences, 149, 05014 (2 pp).

    Article  Google Scholar 

  1110. Fu, W., Guan, X., Yan, Y., 2017, Initial experimental results for a 400 GHz second harmonic gyrotron with quasi-optical confocal cavity. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, RB2.1.

  1111. Bratman, V.L., Denisov, G.G., 1992, Cyclotron autoresonance masers - recent experiments and prospects. Int. J. Electronics, 72, 969-981.

    Article  Google Scholar 

  1112. Bratman, V.L., Denisov, G.G., Ofitserov, M.M., Samsonov, S.V., Arkhipov, O.V., Kazacha, V.I., Krasnykh, A.K., Perelstein, E.A., Zamrij, A.V., 1992, Cyclotron auto-resonance maser with high Doppler frequency up-conversion. Int. J. Infrared and Milli-meter Waves, 13, 1857-1873.

    Article  Google Scholar 

  1113. Bratman, V.L., Denisov, G.G., Samsonov, S.V., 1993, Cyclotron autoresonance masers: achievements and prospects of advance to the submillimeter wavelength range. Proc. 2nd Int. Workshop on Strong Microwaves in Plasmas, Moscow - Nizhny Novgorod -Moscow, Inst. of Applied Physics, Nizhny Novgorod, 1994, Vol. 2, 690-711.

    Google Scholar 

  1114. Bratman, V.L., Denisov, G.G., Kol'chugin, B.D., Samsonov, S.V., Volkov, A.B., 1995, Experimental demonstration of high-efficiency cyclotron-autoresonance-maser operation. Phys. Rev. Lett., 75, 3102-3105.

  1115. Ginzburg, N.S., Zotova, I.V., Sergeev, A.S., Konoplev, I.V., 1997, Experimental observation of cyclotron superradiance under group synchronism conditions. Phys. Rev. Letters, 78, 2365-2368.

    Article  Google Scholar 

  1116. Ginzburg, N.S., Zotova, I.V., Sergeev, A.S., Phelps, A.D.R., Cross, A.W., Shapk, V.G., Yaladin, M.I., Tarakanov, V.P., 1999, Generation of ultrashort microwave pulses based on cyclotron superradiance. IEEE Trans. on Plasma Science, 27, 462-469.

    Article  Google Scholar 

  1117. Bratman, V.L., Denisov, G.G., Kalynov, Yu.K., Samsonov, S.V., Savilov, A.V., Cross, A.W., He, W., Phelps, A.D.R., Ronald, K., Whyte, C.G., Young, A.R., 1999, Novel types of cyclotron resonance devices. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2000, Vol. 2, 683-702.

    Google Scholar 

  1118. Bratman, V.L., Fedotov, A.E., Kolganov, N.G., Samsonov, S.V., Savilov, A.V., 2000, Effective co-generation of opposite and forward waves in cyclotron-resonance masers. Phys. Rev. Lett., 85, 3424-3427.

    Article  Google Scholar 

  1119. Bratman, V.L., Fedotov, A.E., Savilov, A.V., 2000, A gyrodevice based on simultaneous excitation of opposite and forward waves (Gyrotron BWO-TWT). IEEE Trans. on Plasma Science, 28, 1742-1746.

    Article  Google Scholar 

  1120. Bratman, V.L., Fedotov, A.E., Kolganov, N.G., Samsonov, S.V., Savilov, A.V., 2001, Experimental study of CRM with simultaneous excitation of traveling and near-cutoff waves (CARM-Gyrotron). IEEE Trans. on Plasma Science, 29, 609-612.

    Article  Google Scholar 

  1121. Caplan, M., Kulke, B., Westenskow, G.A.; McDermott, D.B., Luhmann, Jr., N.C., 1992, Induction-linac-driven, millimeter-wave CARM oscillator. Laboratory Report UCRL-53689-80, Lawrence Livermore National Laboratory, Livermore, California.

    Google Scholar 

  1122. Danly, B.G., Hartemann, F.V., Chu, T.S., Legorburn, P., Menninger, W. L, Temkin, R.J., 1992, Long-pulse millimeter-wave free-electron laser and cyclotron autoresonance maser experiments. Phys. Fluids, B4, 2307-2314.

  1123. Alberti, S., Danly, B.G., Gulotta, G., Giguet, E., Kimura, T., Menninger, W.L., Rullier, J.L., Temkin, R.J., 1993, Experimental study of a 28 GHz high-power long-pulse cyclotron autoresonance maser oscillator. Phys. Rev. Lett., 71, 2018-2021.

    Article  Google Scholar 

  1124. McCowen, R.B., Sullivan, C.A., Gold, S.H., Fliflet, A.W., 1992, Observation of harmonic gyro-backward-wave oscillation in a 100 GHz CARM oscillator experiment. Int. J. Electronics, 72, No. 5 and 6, 1033-1043.

  1125. Wang, J.G., Gilgenbach, R.M., Choi, J.J., Outten, C.A., Spencer, T.A., 1989, Frequency -tunable, high-power microwave emission from cyclotron autoresonance maser oscillation and gyrotron interactions. IEEE Trans. Plasma Science, 17, 906-908.

    Article  Google Scholar 

  1126. Choi, J.J., Gilgenbach, R.M., Spencer, T.A., 1992, Mode competition in Bragg resonator cyclotron resonance maser experiments driven by a microsecond intense electron beam. Int. J. Electronics, 72, No. 5 and 6, 1045-1066.

  1127. Cooke, S.J., Cross, A.W., He, W., Phelps, A.D.R., 1995, The operation of a second harmonic CARM oscillator. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 427-428.

    Google Scholar 

  1128. Cooke, S.J., Cross, A.W., He, W., Phelps, A.D.R, 1996, Experimental operation of a cyclotron autoresonance maser oscillator at the second harmonic. Phys. Rev. Lett., 77, 4836-4839.

  1129. Young, A.R., He, W. Ronald, K., Cross, A.W., Whyte, C.G., Phelps, A.D.R., 1998, Cold and thermionic cathode CARM experiments. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 448-449.

    Google Scholar 

  1130. Felch, K., James, B.G., Borchard, P., Cahalan, P., Chu, T.S., Hargreaves, T.A., Blank, M., Pershing, D.E., Calame, J.P., Nguyen, K., Danly, B.G., Levush, B., 1999, Recent test results for a 10 kW average power W-band gyroklystron amplifier. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, M-A5.

  1131. Blank, M., Danly, G., Levush, B., Calame, J.P., Nguyen, K., Pershing, D., Petillo, J., Hargreaves, T.A., True, R.B., Theiss, J., Good, G.R., Felch, K., James, B.G., Borchard, P., Cahalan, P., Chu, T.S., Jory, H., Lawson, W.G., Antonsen, Jr., T.M., 1999, Demonstration of a 10 kW average power 94 GHz gyroklystron amplifier. Phys. of Plasmas, 6, 4405-4409.

    Article  Google Scholar 

  1132. Blank, M., Felch, K., James, B.G., Borchard, P., Cahalan, P., Chu, T.S., Jory, H., Hargreaves, T.A., True, R.B., Theiss, A.J., Good, G.R., Danly, B.G., Levush, B., Calame, J.P., Nguyen, K., Pershing, D., Petillo, J., Lawson, W.G., Antonsen, T.M. Jr., 1999, Experimental demonstration of a high-average power W-band gyroklystron amplifier. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2000, Vol. 2, 703-712.

    Google Scholar 

  1133. Blank, M., Felch, K., James, B.G., Borchard, P., Cahalan, P., Chu, T.S., Danly, B.G., Pershing, D.E., Nguyen, K., Calame, J.P., Levush, B., 2000, Demonstration of high average power W-band gyro-amplifiers. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 113-114.

  1134. Blank, M., Danly, B.G., Levush, B., 2000, Experimental demonstration of W-band gyroklystron amplifiers with improved gain and efficiency. IEEE Trans. on Plasma Science, 28, 706-711.

    Article  Google Scholar 

  1135. Blank, M., Felch, K., James, B.G., Borchard, P., Cahalan, P., Chu, T.S., Jory, H., Danly, B.G., Levush, B., Calame, J.P., Nguyen, K.T., Pershing, D.E., 2002, Development and demonstration of high-average power W-band gyro-amplifiers for radar applications. IEEE Trans. on Plasma Science, 30, 865-875.

    Article  Google Scholar 

  1136. Danly, B.G., Blank, M., Calame, J.P., Levush, B., Nguyen, K.T., Pershing, D.E., Parker, R.K., Felch, K.L., James, B.G., Borchard, P., Cahalan, P., Chu, T.S., Jory, H.R., Hargreaves, T.A., True, R.B., Lawson, W.G., Antonsen, T.M., 2000, Development and testing of a high-average power, 94-GHz gyroklystron. IEEE Trans. on Plasma Science, 28, 713-726.

    Article  Google Scholar 

  1137. Blank, M., Borchard, P., Cauffman, S., Felch, F., 2006, Broadband W-band gyrotron amplifier development. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 198.

  1138. Antakov, I.I., Zasypkin, E.V., Sokolov, E.V., Yulpatov, V.K., Keyer, A.P., Musatov, V.S., Myasnikov, V.E., 1993, 35 GHz radar gyroklystrons. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 338-339.

    Google Scholar 

  1139. Antakov, I.I., Gaponov, A.V., Zasypkin, E.V., Sokolov, E.V., Yulpatov, V.K., Aksenova, L.A., Keyer, A.P., Musatov, V.S., Myasnikov, V.E., Popov, L.G., Levitan, B.A., Tolkachev, A.A., 1993, Gyroklystrons: millimeter wave amplifiers of the highest power. Proc. 2nd Int. Workshop on Strong Microwaves in Plasmas, Moscow - Nizhny Novgorod - Moscow, ed. A.G. Litvak, Inst. of Applied Phys., Nizhny Novgorod, 1994, Vol.2, 587-596.

    Google Scholar 

  1140. Antakov, I.I., Aksenova, L.A., Zasypkin, E.V., Moisseev, M.A., Popov, L.G., Sokolov, E.V., Yulpatov, V.K., 1990, Mulit-cavity phase-locked gyrotrons for lower-hybrid heating in torodial plasmas. Proc. Int. Workshop on Strong Microwaves in Plasmas, Suzdal, Inst. of Applied Physics, Nizhny Novgorod, 1991, 773-782.

    Google Scholar 

  1141. Antakov, I.I., Moiseev, M.A., Sokolov, E.V., Zasypkin, E.V., 1993, Theoretical and experimental investigation of X-band two-cavity gyroklystron. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 336-337.

    Google Scholar 

  1142. Antakov, I.I., Moiseev, M.A., Sokolov, E.V., Zasypkin, E.V., 1994, Theoretical and experimental investigation of X-band two-cavity gyroklystron. Int. J. of Infrared and Millimeter Waves, 15, 873-887.

    Article  Google Scholar 

  1143. Zasypkin, E.V., Moiseev, M.A., Sokolov, E.V., Yulpatov, V.K., 1995, Effect of penultimate cavity position and tuning on three-cavity gyroklystron amplifier performance. Int. J. Electronics, 78, 423-433.

    Article  Google Scholar 

  1144. Zasypkin, E.V., Moiseev, M.A., Gachev, I.G., Antakov, I.I., 1996, Study of high-power Ka-band second-harmonic gyroklystron amplifier. IEEE Trans. on Plasma Science, 24, 666-670.

    Article  Google Scholar 

  1145. Antakov, I.I., Gachev, I.G., Sokolov, E.V., 1995, Experimental study of two-cavity gyrotron with feedback between cavities. Proc. Conf.: Intense Microwave-Pulses III, San Diego, Proc. SPIE 2557, 380-385.

    Google Scholar 

  1146. Anatokov, I.I., Zasypkin, E.V., Sokolov, E.V., 1993, Design and performance of 94 GHz high power multicavity gyroklystron amplifier. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 466-467 and Proc. 2nd Int. Workshop on Strong Microwaves in Plasmas, Moscow-Nizhny Novgorod-Moscow, ed. A.G. Litvak, Inst. of Applied Phys., Nizhny Novgorod, 1994, Vol.2, 754-758.

  1147. Zasypkin, E.V., Gachev, I.G., Anatkov, I.I., Moissev, M.A., Lygin, V.K., Sokolov, E.V., 1998, Development of a W-band 120 kW gyroklyston at IAP. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 183.

  1148. Zasypkin, E.V., Gachev, I.G., Antakov, I.I., Moiseev, M.A., Zavolsky, N.A., 1999, Study of a W-band pulsed 200 kW gyroklystron amplifier. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, W-A2.

  1149. Gachev, I.G., Antakov, I.I., Moiseev, M.A., Sokolov, E.V., Zavolsky, N.A., Zaspykin, E.V., 1999, 200 kW pulsed W-band gyroklystron amplifier. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 713-717.

    Google Scholar 

  1150. Gachev, I.G., Antakov, I.I., Zasypkin, E.V., 2000, Status of a W-band pulsed 200 kW gyroklystron experiment. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 181-182.

  1151. Zasypkin, E.V., Gachev, I.G., Antakov, I.I., Sokolov, E.V., 2001, W-band pulsed 300 kW gyroklystron amplifier. Conf. Digest, 26th Int. Conf. on Infrared and Millimeter Waves, Toulouse, France, 5-89-5-91.

  1152. Gachev, I.G., Antakov, I.I., Lygin, V.K., Moiseev, M.A., Sokolov, E.V., Zasypkin, E.V., 2002, A Ka-Band second harmonic gyroklystron with a permanent magnet. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2003, Vol. 1, 151-155.

    Google Scholar 

  1153. Antakov, I. I., E.V., Gachev, I. G., Zasypkin, 2011, Experimental studies of a gyro-klystron operating in the field of a permanent magnet. Radiophysics and Quantum Electronics, 54, No. 3, 166-173.

  1154. Zasypkin, E.V., Gachev, I.G., Antakov, I.I., 2012, Experimental study of a W-band gyro-klystron amplifier operated in the high-order TE021 cavity mode. Radiophysics and Quantum Electronics, 55, No. 5, 309-317.

    Google Scholar 

  1155. Liu, P.K., Zhang, S.C., Xu, S.X., Su, Y.N., Quin, W.Z., Jin, F., Gu, W., Yue, Q.Z., Geng, Z.H., 2007, Recent results in the development of a Ka-band second harmonic gyroklyston amplifier, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 237-238 and Liu, P.K., IECAS Beijing, private communication.

  1156. Liu, P.-K., Zhang, S.C., Xu, S.X., Su, Y.N., Qin, W.Z., Geng, Z.H., Gu, W., Xue, Q.Z., Jin, F., Han, B., 2010, Experimental studies of a Ka-band second harmonic gyroklystron amplifier, Proc. 35th Int. Conf. on Infrared, Millim. and THz Waves, Rome, Italy, Mo-E3.2.

  1157. Xu, S.X., Liu, P.K., Zhang, S., Su, Y., Geng, Z.H., Gu, W., Xue, Q., Han, B., 2012, A Ka-band second harmonic gyroklystron amplifier. IEEE Trans. on Plasma science, 40, 2099-2104.

    Article  Google Scholar 

  1158. Choi, J.J., Kim, H.J., Na, Y.H., Kim, W.C., Kwon, M., Temkin, R., 2002, Initial hot-tests on a 28 GHz five-cavity gyroklystron amplifier. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 367-368.

  1159. Choi, J.J., McCurdy, A.H., Wood, F., Kyser, Calame J, Nguyen, K., Danly, B.G., Levush, B., Parker, R.K., 1997, High power 35 GHz gyroklystron amplifiers. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 229-230.

    Google Scholar 

  1160. Choi, J.J., McCurdy, A.H., Wood, F.N., Kyser, R.H., Calame, J. P, Nguyen, K.T., Danly, B.G., Antonsen, T.M., Levush, B., Parker, R.K., 1998, Experimental investigation of a high power, two-cavity, 35 GHz gyroklystron amplifier. IEEE Trans. on Plasma Science, 26, 416-425.

  1161. Garven, M., Calame, J.P., Choi, J.J., Danly, B.G., Nguyen, K.T., Wood, F., 1998, Experimental 35 GHz multi-cavity gyroklystron amplifiers. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 28-29.

    Google Scholar 

  1162. Garven, M., Calame, J.P., Danly, B.G., Levush, B., Nguyen, K.T., Wood, F.N., 1999, Experimental studies of a high gain 35 GHz gyroklystron amplifier. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, M-A6.

  1163. Calame, J.P., Graven, M., Choi, J.J., Nguyen, K., Wood, F., Blank, M., Danly, B.G., Levush, B., 1999, Experimental studies of bandwidth and power production in a three-cavity 35 GHz gyroklystron amplifier. Phys. of Plasmas, 6, 285-297.

    Article  Google Scholar 

  1164. Garven, M., Calame, J.P., Nguyen, K.T., Danly, B.G., Levush, B., Wood, F.N., 2000, Experimental studies of a four-cavity, 35 GHz gyroklystron amplifier. IEEE Trans. on Plasma Science, 28, 672-680.

    Article  Google Scholar 

  1165. Blank, M., Danly, B.G., Levush, B., Latham, P.E., Pershing, D.E., 1997, Experimental demonstration of a W-band gyroklystron amplifier. Phys. Rev. Lett., 79, 4485-4488.

    Article  Google Scholar 

  1166. Blank, M., Danly, B.G., Levush, B., Pershing, D.E., 1998, Experimental investigation of W-band (93 GHz) gyroklystron amplifiers. IEEE Trans. on Plasma Science, 26, 409-415.

    Article  Google Scholar 

  1167. Blank, M., Danly, B.G., Levush, B., 1998, Experimental demonstration of W-band gyro-amplifiers with improved performance. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 26-27.

    Google Scholar 

  1168. Danly, B.G., Blank, M., Calame, J.P., Levush, B., Nguyen, K., Pershing, D., Petillo, J., Hargreaves, T.A., True, R.B., Theiss, A.J., Good, G.R., Felch, K., Chu, T.S., Jory, H., Borchard, P., James, B.G., Lawson, W.G., Antonsen, T.M., 1998, Development of a W-band gyroklystron for radar applications. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 32-33.

    Google Scholar 

  1169. Burke, J.M., Czarnaski, M.A., Fischer, R.P., Giangrave, M., Fliflet, A.W., Manheimer, W.M., 1991, 85 GHz TE13 phase-locked gyroklystron oscillator experiment. Conf. Dig. 13th Int. Conf. Infrared and Milli Waves, Honolulu, Hawaii, Proc., SPIE 1039, 228-229.

    Google Scholar 

  1170. Fischer, R.P., Fliflet, A.W., Manheimer, W.M., 1992, The NRL 85 GHz quasioptical gyroklystron experiment. Conf. Digest 17th Int. Conf. on Infrared and Millimeter Waves, Pasadena, Proc., SPIE 1039, 254-255.

    Google Scholar 

  1171. Wang, J., Luo, Y., 2014, The study of a Ka-band high power TE01-TE02 gyroklystron, Proc. 15th IEEE Int. Vacuum Electronics Conference (IVEC 2014), Monterey, CA, USA, P3.3. and Li, H., UESTC, Chengdu, China, private communication.

  1172. Ilyakov, E.V., Kulagin, I.S., Kuzikov, S.V., Moiseev, M.A., Petelin, M.I., Rozental, R.M., Zaitsev, N.I., Zavolsky, N.A., 2004, Ka-band gyroklystron operating at a combination of high-order modes. Proc. 15th Int. Conf. on High-Power Particle Beams (BEAMS' 2004), St. Petersburg, Russia, 525-527.

  1173. Ilyakov, E.V., Kulagin, I.S., Kuzikov, S.V., Moiseev, M.A., Petelin, M.I., Shevchenko, A.S., Zaitsev, N.I., 2005, Gyroklystron operating at a sequence of high-order modes. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2006, Vol. 1, 58-61.

    Google Scholar 

  1174. Zaitsev, N.I., Ilyakov, E.V., Kuzikov, S.V., Kulagin, I.S., Lygin, V.K., Moiseev, M.A., Petelin, M.I., Shevchenko, A.S., 2005, Pulsed high-order volume mode gyroklystron. Radiophysics and Quantum Electronics, 48, 737-740.

    Article  Google Scholar 

  1175. Zaitsev, N.I., Kulagin, I.S., Kuzikov, S.V., Plotkin, M.E., Syratchev, I., 2007, Microwave components for 30 GHz high-power gyroklystron. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on THz Electr., Cardiff, UK, 369-370.

    Google Scholar 

  1176. Petelin, M., Danilov, Y., Pavelyev, V., Zasypkin, E., Zaitsev, N., 2010, A research to a high-order-mode gyroklystron, Proc. 11th IEEE Int. Vacuum Electronics Conference (IVEC 2010), Monterey, USA, pp. 191-192.

  1177. Zaitsev, N.I., Danilov, Yu.Yu., Gvozdev, A.K., Kuzikov, S.V., Moiseev, M.A., Petelin, M.I., Plotkin, M.E., Zapevalov, S.A., 2011, A pulsed multimegawatt gyroklystron, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, p. 140.

  1178. Danilov, Yu.Yu., 2012, Input cavity of high-order asymmetric-mode gyroklystron. Technical Physics Letters, 38, No.6, 576-578.

  1179. Kuzikov, S.V., Plotkin, M.E., Zaitsev, N.I., 2014, Method of excitation of a high-order spatial mode in the input cavity of gyroklystron. Journal of Communications Technology and Electronics, 59, No. 1, 71-76.

    Google Scholar 

  1180. Guznov, Yu.M., Danilov, Yu.Yu., Kuzikov, S.V., Novozhiova, Yu.V., Shevchenko, A.S., Zaitsev, N.I., Rozhnev, A.G., Ryskin, N.M., 2013, High-power Ka-band gyro-klystron oscillator with time-delayed feedback. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 7A-3.

  1181. Zaitsev, N.I., Guznov, Yu.M., Kuzikov, S.V., Moiseyev, M.A., Petelin, P.I., Plotkin, M.E., Taj, E.M., Shevchenko, A.S., 2013, High-power pulsed millimeter-wave gyro-klystron based on the TE711 – TE731 mode sequence. Proc. 23rd Int. Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2013), Sevastopol, Crimea, Ukraine, IEEE Catalog No. CFP13788, pp. 912-913.

  1182. Zaitsev, N., Petelin, M., Guznov, Yu., 2014, High-order mode relativistic gyroklystrons. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, p. 174.

    Google Scholar 

  1183. Tantawi, S.G., Main, W.T., Latham, P.E., Nusinovich, G.S., Lawson, W.G., Striffler, C.D., Granatstein, V.L., 1992, High-power X-band amplification from an overmoded three-cavity gyroklystron with a tunable penultimate cavity. IEEE Trans. Plasma Science, 20, 205-215.

    Article  Google Scholar 

  1184. Lawson, W., Calame, J.P., Hogan, P., Skopec, M., Striffler, C.D., Granatstein, V.L., 1992, Performance characteristics of a high-power X-band two-cavity gyroklystron. IEEE Trans. Plasma Science, 20, 216-223.

    Article  Google Scholar 

  1185. Matthews, H.W., Lawson, W., Calame, J.P., Flaherty, M.K.E., Hogan, B., Cheng, J., Latham, P.E., 1994, Experimental studies of stability and amplification in a two-cavity second harmonic gyroklystron. IEEE Trans. Plasma Science, 22, 825-833.

    Article  Google Scholar 

  1186. Lawson, W., Hogan, B., Calame, J.P., Cheng, J., Latham, P.E., Granatstein, V.L., 1994, Experimental studies of 30 MW fundamental mode and harmonic gyro-amplifiers. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.AP 941228, 421-422.

    Google Scholar 

  1187. Park, G.-S., Granatstein, V.L., Park, S.Y., Armstrong, C.M., Ganguly, A.K., 1992, Experimental study of efficiency optimization in a three-cavity gyroklystron amplifier. IEEE Trans. on Plasma Science, 20, 224-231.

    Article  Google Scholar 

  1188. Lawson, W., Hogan, B., Flaherty, M.K.E., Metz, H., 1996, Design and operation of a two-cavity third harmonic Ka-band gyroklystron. Appl. Phys. Lett., 63, 1849-1851.

    Article  Google Scholar 

  1189. Lawson, W., Cheng, J., Calame, J.P., Castle, M., Hogan, B., Granatsein, V. L, Reiser, M., Saraph, G.P., 1998, High power operation of a three-cavity X-band coaxial gyro-klystron. Phys. Rev.Lett., 81, 3030-3033.

  1190. Lawson, W., Cheng, J., Hogan, B., Granatstein, V.L., Xu, X., 1998, High power operation of an 8.6 GHz coaxial gyroklystron. Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 373-374.

    Google Scholar 

  1191. Cheng, J., Xu, X., Lawson, J., Calame, J.P., Castle, M., Hogan, B.P., Granatstein, V.L., Nusinovich, G.S., Reiser, M., 1999, Experimental studies of a high-power, X-band, coaxial gyroklystron. IEEE Trans. on Plasma Science, 27, 1175-1187.

    Article  Google Scholar 

  1192. Lawson, W., Hogan, B., Gouveia, S., Huebschman, B., Granatstein, V.L., 2002, Development of Ku-band frequency-doubling coaxial gyroklystrons for accelerator applications. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 1-82.

  1193. Lawson, W., Hogan, B., Gouveia, E.S., Hübschman, B., Granatstein, V.L., 2002, Improved of a frequency doubling Ku-band gyroklystron experiment. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 203-204.

    Chapter  Google Scholar 

  1194. Lawson, W., Gouveia, S., Hogan, B., Granatstein, V.L., 2003, Experimental results of four-cavity 17 GHz gyroklystron. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 344-345.

  1195. Gouveia, E.S., Lawson, W., Hogan, B., Bharathan, K., Granatstein, V.L., 2003, Current status of gyroklystron research at the University of Maryland. Proc. 6th Workshop of High Energy Density and High Power, Berkeley Springs, West Virginia, 79-88.

  1196. Lawson, W., Calame J.P., Nusinovich, G.S., Hogan, B., 2017, Reflections on the University of Maryland’s program investigating gyro-amplifiers as potential sources for linear colliders. Terahertz Science and Technology, 10, No. 1, 1-43.

    Google Scholar 

  1197. Liu, B., Wang, E., Qian, L., Li, Z., Feng, J., 2010, Experimental study of a Ka-band gyro-TWT with the mode-selective ciruits, J. Infrared Milli Terahz Waves, 31, 1463-1468.

    Article  Google Scholar 

  1198. Liu, B., Wang, E.F., Qian, L.J., Li, Z.I., Feng, J.J., Experimental study of a Ka band gyro-TWT with the mode-selective circuits, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Mo-E3.4.

  1199. Liu, B., Feng, J., Wang, E., Li, Z., Zeng, X., Qian, L., Wang, H., 2011, Design and experimental study of a Ka-band gyro-TWT with periodic dielectric loaded circuits, IEEE Trans. on Plasma Science, 39, 1665-1672.

    Article  Google Scholar 

  1200. Wang, E.F., Zeng, X., Liu, B.T., Li, Z.L., Feng, J.J., 2012, Experimental study of 290 kW Ka-band gyrotron-traveling wave-tube, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, pp. 215-216.

  1201. Wang, E.F., Zeng, X., Liu, B.T., Li, Z.L., Feng, J.J., Yan, T.C., 2013, Experimental study of high-frequency and high-gain Ka-band gyrotron-traveling wave-tube. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 3P-15.

  1202. Liu, B., Li, Z., Wang, E., Zeng, X. Zhu, Y., Feng, J., Yan, T., 2013, Experimental study of a Q-band gyro-TWT. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 7A-5.

  1203. Wang, E., Xi, A., Zeng, X., Sun, H., Zhu, S., Feng, J., 2015, Preliminary experiment research on the W-band gyrotron traveling wave tube. 16th IEEE International Conference on Vacuum Electronics (IVEC 2015), Beijing, P.R. China, S7.4.

  1204. Ferguson, E., Symons, R.S., 1981, A gyro-TWT with a space-charged limited gun. Proc. Int. Electron Device Meeting, 198-201.

  1205. Eckstein, J.N., Latshaw, D.W., Stone, D.S., 1983, 95 GHz gyro traveling wave tube. VARIAN Assoc., Final Rep. Contract DASG60-79-C-005 MOD P003 (BMDACTC), and Bohlen, H.P., Felch, K., 1996, private communication, CPI, Palo Alto.

  1206. Blank, M., Borchard, P., Cauffman, S., Felch, K., 2005, Development and demonstration of a broadband W-band gyro-TWT amplifier. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 652-653.

    Google Scholar 

  1207. Blank, M., Borchard, P., Cauffman, S., Felch, K., 2006, Demonstration of a broadband W-band gyro-TWT amplifier. Proc. Int. Vacuum Electronics Conference and Int. Vacuum Electron Sources (IVEC/IVESC 2006), Monterey, California, USA, 459-460.

  1208. Duffield, M.J., North, R., 2011, Manufacture and evaluation of a GyroTWA amplifier. Proc. 12th IEEE Int. Vacuum Electronics Conf. (IVEC 2011), Bangalore, India, pp. 333.

    Google Scholar 

  1209. Bratman, V.L., Cross, A.W., Denisov, G.G., He, W., Phelps, A.D.R., Ronald, K., Samsonov, S.V., Whyte, C.G., Young, A.R., 2000, Efficient wide-band gyro-TWT with a helically grooved waveguide. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 175-176.

  1210. Denisov, G.G., 2001, Development of frequency-tunable high-power gyro-devices. Conf. Digest, 26th Int. Conf. on Infrared and Millimeter Waves, Toulouse, France, 5-42-5-47.

  1211. Denisov, G.G., Bratman, V.L., Manuilov, V.N., Kalynova, G.I., Ofitserov, M.M., Samsonov, S.V., Volkov, A.B., 2002, New test results on broad-band gyro-TWT and gyro-BWO with helically grooved operating waveguides. Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 197-198.

  1212. Bratman, V.L., Denisov, G.G., Kalynova, G.I., Manuilov, V.N., Ofitserov, M.M., Samsonov, S.V., Volkov, A.B., 2002, Broadband efficient low-relativistic gyro-TWT with helically grooved waveguide. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 359-360.

  1213. Samsonov, S.V., Bogdashov, A.A., Denisov, G.G., Eremeev, A.G., Gachev, I.G., Holoptsev, V.V., Ivanov, V.Yu., Kalynova, G.I., Kornishin, S.Yu., Kurkin, V.S., Manuilov, V.N., Maslov, V.V., Mishakin, S.V., Plotnikov, I.V., Smirnova, T.M., 2011, Development of helical-waveguide gyro-TWT at IAP, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, pp. 123-124.

  1214. Bratman, V.L., Cross, A.W., Denisov, G.G., Glyavin, M.Yu., He, W., Luchinin, A.G., Lygin, V.K., Manuilov, V.N., Phelps, A.D.R., Samsonov, S.V., Thumm, M., Volkov, A.B., 2002, Broadband gyro-TWTs and gyro-BWOs with helically rippled waveguides. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 46-57.

    Google Scholar 

  1215. Denisov, G.G., Bratman, V.L., Glyavin, M.Yu., Lygin, V.K., Luchinin, A.G., Manuilov, V.N., Ofitserov, M.M., Samsonov, S.V., Thumm, M., Volkov, A.B., 2003, Recent test results on broad-band gyro-TWT and gyro-BWO with hellically grooved operating waveguides. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 338-339.

  1216. Bratman, V.L., Denisov, G.G., Samsonov, S.V., Cross, A.W., Phelps, A.D.R., Xe, W., 2007, High-efficiency wideband gyro-TWTs and gyro-BWOs with helically corrugated waveguides, Radiophysics and Quantum Electronics, 50, 95-107.

    Article  Google Scholar 

  1217. Samsonov, S.V., Bratman, V.L., Denisov, G.G., Gachev, I.G., Glyavin, M.Yu., Manuilov, V.N., 2007, Gyro-TWTs and gyro-BWOs with helically corrugated waveguides. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 578-580.

  1218. Samsonov, S.V., Denisov, G.G., Gachev, I.G., Kalynova, G.I., Manuilov, V.N., Mishakin, S.V., Bykov, Yu.V., Eremeev, A.G., Holoptsev, V.V., 2009, Development of helical-waveguide gyro-TWT and gyro-BWO, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, M3D03.0269.

  1219. Samsonov, S.V., Denisov, G.G., Gachev, I.G., Eremeev, A.G., Fiks, A.S., Kholoptsev, V.V., Kalynova, G.I., Manuilov, V.N., Mishakin, S.V., Sokolov, E.V., 2012, CW Ka-band kilowatt-level helical-waveguide Gyro-TWT. IEEE Trans. on Electron Devices, 59, 2250-2255.

    Article  Google Scholar 

  1220. Samsonov, S.V., Gachev, I.G., Denisov, G.G., Bogdashov, A.A., Mishakin, S.V., Fiks, A.S., Soluyanova, E.A., Tai, E.M., Dominyuk, Y.V., Levitan, B.A., Murzin, V.N., 2014, Ka-Band gyrotron traveling-wave tubes with the highest continuous-wave and average power. IEEE Trans. on Electron Devices, 61, No. 6, 4264-4267.

    Google Scholar 

  1221. Samsonov, S.V., Denisov, G.G., Gachev, I.G., Bogdashov, A.A., Mishakin, S.V., Fiks, A.S., Soluyanova, E.A., Tai, E.M., 2014, Ka-band gyro-TWTs with high CW and average power. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 172-173.

  1222. Samsonov, S.V., Bogdashov, A.A., Denisov, G.G., Gachev, I.G., Mishakin, S.V., 2016, Recent experiments and simulations on gyro-TWTs with helically corrugated waveguides. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, H4B.5.

  1223. Samsonov, S.V., Denisov, G.G., Gachev, I.G., Bogdashov, A.A., Mishakin, S.V., Manuilov, V.N., Belousov, V.I., Sobolev, D.I., Sokolov, E.V., Soluyanova, E.A., Tai, E.M., 2017, Development of gyrotron traveling-wave tubes at IAP and Gycom. EPJ Web of Conferences, 149, 04002 (2 pp).

    Article  Google Scholar 

  1224. Xue, Q.Z., Du, C.H., Liu, P.K., Zhang, S.C., Liu, P.K., Gu, W., Su, Y.L., Xu, S.X., Geng, Z.H., Wang, S.J., 2012, Research Progress of Ka band gyro-TWTs in IECAS, Proc. 13th IEEE Int. Vacuum Electronics Conference and 9th IEEE Int. Vacuum Electron Sources Conference (IVEC-IVESC 2012), Monterey, CA, USA, p. 421.

    Google Scholar 

  1225. Wang, J., Luo, Y., Xue, D., 2013, The study of a high power TE11 Ku-band gyro-TWT. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 1B-5.

  1226. Liu, G., Que, Q., Zhang, S., Gu, W., Wang, X., Zhao, G., Zhao, D., Geng, Z., Xu, S.-H., 2018, Development and demonstration of a Ka-band gyrotron traveling-wave tube, IEEE Trans. on Plasma Science, 46, No. 6, 1975-1983.

    Google Scholar 

  1227. Sirigiri, J.R., Shapiro, M.A., Temkin, R.J., 2002, Initial experimental results from the MIT 140 GHz quasioptical gyro-TWT. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 83-84.

  1228. Sirigiri, J.R., Shapiro, M.A., Temkin, R.J., 2002, Experimental results from the MIT 140 GHz quasioptical Gyro-TWT, Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 235-236.

    Chapter  Google Scholar 

  1229. Sirigiri, J.R., Shapiro, M.A., Temkin, R.J., 2003, A novel 140 GHz quasioptical gyro-TWT. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 207-208.

    Google Scholar 

  1230. Joye, C.D., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Torrezan, A.C., 2008, Operation of a wideband 140 GHz, 1 kW confocal gyro-traveling wave amplifier, Proc. 9th IEEE Int. Vacuum Electronics Conference (IVEC 2008), Monterey, CA, USA, 89-90.

  1231. Joye, C.D., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2008, A wideband 140 GHz, 1 kW, confocal gyro-traveling wave amplifier, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, F2A2.1347.

  1232. Kim, H., Joye, C.D., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Woskov, P.P., Maly, T., Griffin, R.G., 2009, An overmoded 140 GHz, 1 kW quasioptical gyro-TWT with an internal mode converter, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, T5E50.0072.

  1233. Joye, C.D., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., 2009, Demonstration of a 140-GHz 1-kW confocal gyro-traveling-wave amplifier, IEEE Trans. on Electron Devices, 56, 818-827.

    Article  Google Scholar 

  1234. Kim, H.J., Nanni, E.A., Shapiro, M.A., Sirigiri, J.R., Woskov, P.P., Temkin, R.J., 2010, Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube, Physical Review Letter, 105, 135101-1 135101-4.

    Article  Google Scholar 

  1235. Kim, H., Nanni, E.A., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Woskov, P.P., 2010, Experimental measurement of picosecond pulse amplification in a 140 GHz gyro-TWT, Proc. 11th IEEE Int. Vacuum Electronics Conf. (IVEC 2010), Monterey, USA, 193-194.

  1236. Nanni, E.A., Kim, H.J., Shapiro, M.A., Woskov, P.P., Temkin, R.J., 2010, Amplification of picosecond pulses in a 140 GHz gyro-TWT, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Tu-E3.2.

  1237. Nanni; E.A., Lewis, S.M., Shapiro, M.A., Griffin, R.G., Temkin, R.J., 2013, Photonic-band-gap traveling-wave gyrotron amplifier. Physical Review Letters, 111, 235101 (5 pp).

  1238. Nanni, E.A., Lewis, S.M., Shapiro, M.A., Temkin, R.J., 2013, A high gain photonic bandgap gyrotron amplifier. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 7A-1.

  1239. Soane, A., Guss, W., Jawla, S., Shapiro, M., Temkin, R., 2014, Progress of a 140 GHz gyro-amplifier using a confocal waveguide. Proc. 15th IEEE Int. Vacuum Electronics Conference (IVEC 2014), Monterey, CA, USA, 8.1.

  1240. Soane, A.V., Guss, W.C., Jawla, S., Shapiro, M.A., Temkin, R.J., 2016, A 140-GHz gyro-amplifier using a sever-less confocal waveguide. 17th IEEE International Vacuum Electronics Conference (IVEC 2016), April 19-21, 2016, Monterey, CA, USA, Invited Keynote, P4.12.

  1241. Nanni, E.A., Jawla, S., Lewis, S.M., Shapiro, M., Temkin, R.J., 2016, Amplification of picosecond pulses with a photonic-band-gap gyro-TWT. 17th IEEE International Vacuum Electronics Conference (IVEC 2016), April 19-21, 2016, Monterey, CA, USA, Invited Keynote, S8.4.

  1242. Soane, A.V., Shapiro, Jawla, S, M.A., Temkin, R.J., 2017, Operation of a 140-GHz gyro-amplifier using a dielectric-loaded, sever-less confocal waveguide. IEEE Trans. on Plasma Science, 45, No. 10, 2835-2840.

    Google Scholar 

  1243. Soane, A.V., Jawla, S., Shapiro, M.A., Temkin, R.J., 2017, A 140 GHz gyro-amplifier using a dielectric-loaded, sever-less confocal waveguide. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, GIII-2.

  1244. Nanni, E.A., Jawla, S., Lewis, S.M., Shapiro, M.A., Temkin, R.J., 2017, Photonic-band-gap gyrotron amplifier with picosecond pulses. Appl. Phys. Lett., 111, 233504 (5 pp).

    Article  Google Scholar 

  1245. Park, G.S., Park, S.Y., Kyser, R.H., Armstrong, C.M., Ganguly, A.K., Parker, R.K., 1994, Broadband operation of a Ka-band tapered gyro-traveling wave amplifier. IEEE Trans. Plasma Science, 22, 536-543.

    Article  Google Scholar 

  1246. Park, G.S., Choi, J.J., Park, S.J., Armstrong, C.M., Ganguly, A.K., Kyser, R.H., Parker, R.K., 1995, Gain broadening of two-stage tapered gyrotron traveling wave tube amplifier. Phys. Rev. Lett., 74, 2399-2402.

    Article  Google Scholar 

  1247. Choi, J. J, Park, G.S., Ganguly, A.K., Armstrong, C.M., Calise, F., Wood, F., Sobocinski, B., Parker, R.K., 1995, Experimental investigation on broadband millimeter wave gyro-TWT amplifiers. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 343-344.

  1248. Garven, M., Calame, J.P., Danly, B.G., Nguyen, K.T., Levush, B., Wood, F.N., Pershing, D.E., 2002, A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Trans. on Plasma Science, 30, 885-893.

    Article  Google Scholar 

  1249. Garven, M., Calame, J.P., Danly, G., Nguyen, K.T., Levush, B., Wood, F.N., 2002, Experimental studies of a Gyro-TWT amplifier with a lossy ceramic interaction region. 29th IEEE Int. Conf. on Plasma Science (ICOPS 2002), Banff, Canada, May 26-30, 2B0607.

  1250. Calame, J.P., Garven, M., Danly, B.G., Levush, B., Nguyen, K.T., 2003, Gyrotron-traveling wave-tube circuits based on lossy ceramics. IEEE Trans. on Electron Devices, 49, 1469-1477.

    Article  Google Scholar 

  1251. Pershing, D.E., Nguyen, K.T., Calame, J.P., Danly, B.G., Levush, B., Wood, F.N., Garven, M., 2004, A TE11 Ka-band gyro-TWT amplifier with high-average power compatible distributed loss. IEEE Trans. on Plasma Science, 32, 947-956.

    Article  Google Scholar 

  1252. Leou, K.C., McDermott, D.B., Luhmann, Jr., N.C., 1992, Design of experimental dielectric loaded wideband Gyro-TWT. Conf. Digest 17th Conf. on Infrared and Millimeter Waves, Pasadena, Proc., SPIE 1929, 326-327.

    Google Scholar 

  1253. Leou, K.C., Wang, Q.S., Chong, C.K., Balkcum, A.J., Fochs, S.N., Garland, E.S., Pretterebner, J., Lin, A.T., McDermott, D.B., Hartemann, F., Luhmann, Jr., N.C., 1993, Gyro-TWT amplifiers at UCLA. Conf. Digest 18th Int. Conf. on Infrared and Millimeter Waves, Colchester (Essex, UK), Proc., SPIE 2104, 531-532.

  1254. Wang, Q.S., Leou, K.C., Chong, C.K., Balkeum, A.J., McDermott, D.B., Luhmann, Jr., N.C., 1994, Gyro-TWT amplifier development at UCD. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 415-416.

    Google Scholar 

  1255. Wang, Q.S., McDermott, D.B. Luhmann, Jr., N.C., 1995, Stable operation of a 200 kW second harmonic TE21 gyro-TWT amplifier. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 347-348.

  1256. Wang, Q.S., McDermott, D.B. Luhmann, Jr., N.C., 1995, Demonstration of marginal stability by a 200 kW second-harmonic gyro-TWT amplifier. Phys. Rev. Lett., 75, 4322-4325.

    Article  Google Scholar 

  1257. Wang, Q.S., McDermott, D.B., Luhmann, Jr., N.C., 1996, Operation of a stable 200-kW second-harmonic gyro-TWT amplifier. IEEE Trans. on Plasma Science, 24, 700-706.

    Article  Google Scholar 

  1258. Leou, K.C., McDermott, D.B., Luhmann, Jr., N.C., 1996, Large-signal characteristics of a wide-band dielectric-loaded gyro-TWT amplifier. IEEE Trans. on Plasma Science, 24, 718-726.

    Article  Google Scholar 

  1259. Furano, D.S., McDermott, D.B., Kou, C.S., Luhman, Jr., N.C., Vitello, P., 1989, Theoretical and experimental investigation of a high-harmonic gyro-TWT amplifier. Phys. Rev. Lett., 62, 1314-1317.

    Article  Google Scholar 

  1260. Chong, C.K., McDermott, D.B., Luhmann, Jr., N.C., 1998, Large-signal operation of a third-harmonic slotted gyro-TWT amplifier. IEEE Trans. on Plasma Science, 26, 500-507.

    Article  Google Scholar 

  1261. Song, H.H., Barnett, L.R., McDermott, D.B., Hirata, Y., Hsu, H.I., Marandos, P.S., Lee, J.S., Chang, T.H., Chu, K.R., Luhmann, Jr., N.C., 2003, W-band heavily loaded TE01 gyrotron traveling wave amplifier. 4th IEEE Int. Vacuum Electronics Conf. (IVEC 2003), Seoul, Korea, 348-349.

  1262. Song, H.H., McDermott, D.B., Hirata, Y., Barnett, L.R., Domier, C.W., Hsu, H.L., Chang, T.H., Tsai, W.C., Chu, K.R., Luhmann, Jr., N.C., 2003, Theory and experiment of a 95 GHz gyrotron traveling wave amplifier. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 205-206.

    Google Scholar 

  1263. Song, H.H., McDermott, D.B., Hirata, Y., Barnett, L.R., Domier, C.W., Hsu, H.L., Chang, T.H., Tsai, W.C., Chu, K.R., Luhmann, Jr., N.C., 2004, Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier. Physics of Plasmas, 11, 2935-2941.

    Article  Google Scholar 

  1264. Barnett, L.R., Luhmann, N.C., Jr., Chiu, C.C., Chu, K.R., Yan, Y.C., 2007, Advances in W-Band TE01 gyro-TWT amplifier design, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 233.

  1265. Chu, K.R., Barnett, L.R., Lau, W.K., Chang, L.H., Chen H.Y., 1990, A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment. IEEE Trans. Electron Devices, 37, 1557-1560.

    Article  Google Scholar 

  1266. Chu, K.R., Barnett, L.R., Chen, H.Y., Chen, S.H., Wang, CH., Yeh, Y.S., Tsai, Y.C., Yang, T.T., Dawn, T.Y., 1995, Stabilization of absolute instabilities in the gyrotron traveling wave amplifier. Phys. Rev. Lett., 74, 1103-1106 and, 1997, priv. communication.

  1267. Chu, K.R., Chen, H.Y., Hung, C.L., Chang, T.H., Barnett, L.R., Chen, S.H., Yang, T.T., An ultra high gain gyrotron travelling wave amplifier. 1998, Conf. Digest 23rd Int. Conf. on Infrared and Millimeter Waves, Colchester, UK, 30-31.

  1268. Chu, K.R., Chen, H.Y., Hung, C.L., Chang, T.H., Barnett, L.R., Chen, S.H., Yang, T.T., 1998, Ultrahigh gain gyrotron travelling wave amplifier. Phys. Rev. Lett., 81, 4760-4763.

    Article  Google Scholar 

  1269. Chu, K.R., Chang, T.H., Chen, H.Y., Hung, C.L., Barnett, L.R., Chen, S.H., Yang, T.T., 1999, Physics and technology issues of the gyrotron traveling wave amplifier. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 718-727.

    Google Scholar 

  1270. Barnett, L.R., Tsai, W.C., Hsu, H.L., Luhmann, Jr., N.C., Chiu, C.C., Pao, K.F., Chu, K.R., 2006, 140 kW W-band TE01 ultra high gain gyro-TWT amplifier. Proc. Int. Vacuum Electronics Conference and Int. Vacuum Electron Sources (IVEC/IVESC 2006), Monterey, California, USA, 461-462.

  1271. Chiu, C.C., Pao, K.F., Yan, Y.C., Chu, K.R., Barnett, L.R., Luhmann, N.C., 2008, Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, T5D23.1185.

  1272. Wang, H., Li, H., Luo, Y., Yan, R., 2011, Theoretical and experimental investigation of a Ka-band Gyro-TWT with lossy interaction structure, J. Infrared Milli Terahz Waves, 32, 172-185.

    Article  Google Scholar 

  1273. Yan, R., Luo, Y., Liu, G., Pu, Y., 2012, Design and experiment of a Q-band gyro-TWT loaded with lossy dielectric. IEEE Trans. on Electron Devices, 59, 3612-3617.

  1274. Youlei, P., Luo, Y., Jiang, W., Liu, G., 2013, Research of low frequency oscillations of Ka band TE01 gyro-TWT. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 3P-11.

  1275. Xu, Y., Luo, Y., Yan, R., Wang, J., Pu, Y., Li, H., Xiong, C., 2013, Design and experiment of a U-band TE01 gyro-TWT. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 3P-9.

  1276. Wang, J., Luo, Y., Xu, Y., Yan, R., Pu, Y., Deng, X., Wang, H., 2014, Simulation and experiment of a Ku-band gyro-TWT. IEEE Trans. on Electron Devices, 61, 1818-1823.

    Article  Google Scholar 

  1277. Yan, R., Tang, Y., Luo, Y., 2014, Design and experimental study of a high-gain W-band gyro-TWT with nonuniform periodic dielectric loaded waveguide. IEEE Trans. on Electron Devices, 61, No. 6, 2564-2569.

    Google Scholar 

  1278. Xu, Y., Luo, Y., Yan, R., Wang, J.X., Liu, G., 2015, Design and experimental study of a broadband U-band TE01 gyrotron travelling wave tube. 16th IEEE International Conference on Vacuum Electronics (IVEC 2015), Beijing, P.R. China, S7.2.

  1279. Wang, J.X., Xu, Y., Luo, Y., 2015, Theory and experimental study of a 200 kW Ku-band gyro-TWT. 16th IEEE International Conference on Vacuum Electronics (IVEC 2015), Beijing, P.R. China, S7.3.

  1280. Wang, J., Tian, Q., Li, X., Shu, G., Xu, Y., Luo, Y., 2017, Theory and experiment investigate of a 400 kW Ku-band gyro-TWT with mode selective loss loading structure. IEEE Trans. on Electron Devices, 64, 550-555.

    Article  Google Scholar 

  1281. Xu, Y., Li, Y., Wang, J., Jiang, W., Liu, G., Luo, Y., Li, H., 2018, Design and Experiment of a high power and broadband Ku-band TE11 Mode Gyro-TWT. IEEE Trans. on Electron Devices, 65, No. 5, 1962-1968.

    Google Scholar 

  1282. Yan, R., Luo, Y., Zhang, Q., Shang, Y., Liao, X., 2018, Development of high average power and high stability gyro-TWT for industrial use. Proc. 19th Int. Vacuum Electronics Conference (IVEC 2018), Monterey, CA, USA, 8.4.

  1283. Yan, R., Li, H., Wang, D., Wang, J., Wang, L., Pu, Y., Xu, Y., Jiang, W., Liu, G., Luo, Y., 2018, Investigation on high average power operations of gyro-TWTs with dielectric-loaded waveguide circuits. IEEE Trans. on Electron Devices, 65, No. 7, 3012-3018.

    Google Scholar 

  1284. Jiang, W., Wang, J., Shen, Y., Liu, G., Wu, Z., 2018, Curved geometry collector design for high-power gyrotraveling wave tubes. IEEE Trans. on Electron Devices, 65, No. 6, 2327-2333.

    Google Scholar 

  1285. Jung, S.W., Lee, H.S., Jang, K.H., Choi, J.J., So, J.H., 2015, Experiments on a Ku-band gyrotron traveling-wave-tube amplifier with a tapered waveguide. J. Korean Phys. Soc., 67, No. 5, 854-859.

    Google Scholar 

  1286. He, W., Donaldson, C.R., Zhang, L., McElhinney, P., Yin, H., Ronald, K., Cross, A.W., Phelps, A.D.R., 2015, Latest development of a W-band gyro-TWA based on a helically corrugated interaction region. 16th IEEE International Conference on Vacuum Electronics (IVEC 2015), Beijing, P.R. China, S7.1.

  1287. He, W., Donaldson, C.R., Zhang, L., McElhinney, P., Yin, H., Garner, J., Ronald, K., Cross, A.W., Phelps, A.D.R., 2015, Further experiments of a W-band gyro-TWA based on a helically corrugated interaction region. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, H1E-4.

  1288. He, W., Donaldson, C.R., Zhang, L., McElhinney, P., Yin, H., Garner, J., Ronald, K., Cross, A.W., Phelps, A.D.R., 2016, High pulse repetition frequency operation of a W-band gyro-TWT based on a cusp electron beam source. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, H4B.4.

  1289. He, W., Donaldson, C.R., Zhang, L., Ronald, K., Phelps, A.D.R., Cross, A.W., 2017, Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region. Phys. Rev. Lett., 119, 184801 (5 pp).

    Article  Google Scholar 

  1290. Phelps, A.D.R., 2017, Progress in microwave to sub-THz sources at Strathclyde. EPJ Web of Conferences, 149, 04023 (2 pp).

    Article  Google Scholar 

  1291. He, W., Donaldson, C.R., Zhang, L., McElhinney, P., Garner, J., Ronald, K., Cross, A.W., Phelps, A.D.R., 2017, Measurement of a W-band gyro-TWA experiment based on a helically corrugated interaction region. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, GIII-6.

  1292. He, W., Donaldson, C.R., Zhang, L., McElhinney, Yin, H., P., Garner, J., Ronald, K., Cross, A.W., Phelps, A.D.R., 2017, Design and experiment of a broadband W-band gyro-TWA mbased on a helically corrugated interaction region. Proc. 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico, RC2.4.

  1293. Kesar, A., Blank, D., Jerby, E., 2002, Amplitude locking in a gyro TWT amplifier with a delayed feedback. 29th IEEE Int. Conf. on Plasma Science (ICOPS 2002), Banff, Canada, May 26-30, 3P18.

  1294. Denisov, G.G., Bratman, V.L., Cross, A.W., He, W., Phelps, A.D.R., Ronald, K., Samsonov, S.V., Whyte, C.G., 1998, Experimental results from a helical waveguide gyro-TWT. Conf. Dig. 23rd Int. Conf. Infrared and Millimeter Waves, Colchester, UK, 170-172.

    Google Scholar 

  1295. Denisov, G.G., Bratman, V.L., Cross, A.W., He, W., Phelps, A.D.R., Ronald, K., Samsonov, S.V., Whyte, C.G., 1998, Gyrotron traveling wave amplifier with a helical interaction waveguide. Phys. Rev. Letters, 81, 5680-5683.

  1296. Bratman, V.L., Cross, A.W., Denisov, G.G., He, W., Phelps, A.D.R., Ronald, K., Samsonov, S.V., Whyte, C.G., Young, A.R., 1999, Frequency-broadband gyro-travelling wave amplifier operating with eigenwaves of helically rippled waveguides. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, M-4A, and private communication.

  1297. Bratman, V.L., Cross, A.W., Denisov, G.G., He, W., Phelps, A.D.R., Ronald, K., Samsonov, S.V., Whyte, C.G., Young, A.R., 2000, High-gain wide-band gyrotron travelling wave amplifier with a helically corrugated waveguide. Phys. Rev. Lett.,84, 2746-2749.

    Article  Google Scholar 

  1298. Phelps, A.D.R., Bratman, V.L., Cross, A.W., Denisov, G.G., He, W., Ronald, K., Samsonov, S.V., Whyte, C.G., Young, A.R., 2001, A broadband, efficient, gyrotron amplifier. Proc. 9th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 165, 193-198.

    Google Scholar 

  1299. Menninger, W.L., Danly, B.G., Temkin, R.J., 1996, Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments. IEEE Trans. on Plasma Science, 24, 687-699.

    Article  Google Scholar 

  1300. Gold, S.H., Fliflet, A.W., Kirkpatrick, D.A., 1989, High-power millimeter-wave gyro-traveling-wave amplifier. Conf. Digest 14th Int. Conf. on Infrared and Millimeter Waves, Würzburg, SPIE 1240, 332-333.

    Google Scholar 

  1301. Gold, S.H., Kirkpatrick, D.A., Fliflet, A.W., McCowan, R.B., Kinkaed, A.K., Hardesty, D.L., Sucy, M., 1991, High voltage millimeter-wave gyro-travelling-wave amplifier. J. Appl. Phys., 69, 6696-6698, and, Gold, S.H., 1998, private communication.

  1302. Young, A.R., Phelps, A.D.R., He, W., Whyte, C.G., Cross, A.W., Ronald, K., Robertson, C.W., Rafferty, E.G., Thomson, J., 2004, Operation of a thermionic gyro-TWT with a helical interaction waveguide. 5th IEEE Int. Vacuum Electronics Conf. (IVEC 2004), Monterey, CA, USA, 55-56.

  1303. Phelps, A.D.R., Ronald, K., He, W., Young, A.R., Rafferty, E.G., Cross, A.W., Whyte, C.G., Thomson, J., Robertson, C.W., 2004, Results from thermionic cathode gyro-TWA experiments. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 273-274.

    Google Scholar 

  1304. Young, A.R., Whyte, C.G., Raffety, E.G., Thomson, J., Robertson, C.W., Phelps, A.D.R., He, W., Cross, A.W., Ronald, K., 2006, Comparison of broadband gyro-TWA simulations with experiments. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 342.

  1305. Cross, A.W., He, W., Phelps, A.D.R., Ronald, K., Whyte, C.G., Young, A.R., Robertson, C.W., Rafferty, E.G., Thomson, J., 2007, Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun. Applied Physics Letters, 90, 253501-1 – 253501-3.

  1306. Rowlands, D.H., Phelps, A.D.R., Young, A.R., Whyte, C.G., He, W., Cross, A.W., Robertson, C.W., Ronald, K., 2007, A cusp gun gyro-TWA with helical interaction region, Proc. 8th IEEE Int. Vacuum Electronics Conf. (IVEC 2007), Kitakyushu, Japan, 235-236.

  1307. Whyte, C.G., Young, A.R., Rowlands, D.H., Robertson, C.W., Phelps, A.D.R., He, W., Cross, A.W., Ronald, K., 2008, Broadband gyro-TWA with thermionic CUSP gun: simulations and comparison with experiment, Proc. 9th IEEE Int. Vacuum Electronics Conference (IVEC 2008), Monterey, CA, USA, 91-92.

  1308. Blank, M., Danly, B.G., Levush, B., 1999, Experimental demonstration of a W-band (94 GHz) gyrotwystron amplifier. IEEE Trans. on Plasma Science, 27, 405-411.

    Article  Google Scholar 

  1309. Zasypkin, E.V., Levush, B., Blank, M., Sokolov, E.V., Antakov, I.I., 1997, Study of X-band three-stage gyrotwystron amplifier. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 281-282.

    Google Scholar 

  1310. Blank, M., Zasypkin, E.V., Levush, B., 1998, An investigation of X-band gyrotwystron amplifiers. IEEE Trans. on Plasma Science, 26, 577-581.

    Article  Google Scholar 

  1311. Liu, B.T., Zhang, Y.S. Zheng, L., 2006, A Ka-Band phigtron with a novel coupled ball-cavity as output. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 201.

  1312. Luo, J., Yuan, G., Luan, Y., Guo, W., Zhu, M., Jiao, C., Zhang, Y., Lou, X., Zheng, L., Wu, E., Liu, B., 2006, First experiment and design of a harmonic multiplying gyrotron traveling wave amplifier with the TE02 mode output. Conf. Dig. 31st Int. Conf. on Infrared and Millimeter Waves & 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 339.

  1313. Luo, J., Yuan, G., Zhang, Y., Liu, B., Zheng, L., Guo, W., Zhu, M., Jiao, C., Luan, Y., Lou, X., 2007, A harmonic multiplying gyrotron traveling wave amplifier with the TE02 mode output, Proc. 8th IEEE Int. Vacuum Electronics Conf. (IVEC 2007), Kitakyushu, Japan, 229-230 and Liu, P.K., IECAS Beijing, private communication.

  1314. Luo, J., Yuan, G., Zhang, Y., Guo, W., Zhu, M., Jiao, C., Li, Y., Zhang, T., Sun, H., Luan, Y., Zhang, C., Cui, J., 2008, Research progress of the harmonic multiplying gyrotron traveling wave amplifier at Ka Band in IECAS, Proc. 9th IEEE Int. Vacuum Electronics Conference (IVEC 2008), Monterey, CA, USA, 93-94.

  1315. Luo, J., Yuan, G., Zhang, Y., Guo, W., Zhu, M., Jiao, C., Li, Y., Zhang, T., Sun, H., Luan, Y., Zhang, C., Cui, J., 2008, A harmonic multiplying gyrotron traveling wave amplifier at Ka band developed in IECAS, Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, W5D30.1232.

  1316. Luo, J., Zhang, Y., Guo, W., Zhu, M., Yuan, G., Zhou, W., Zhang, C., Cui, J., Zhang, Y., 2009, 8 mm band, 75 kW harmonic multiplying gyrotron traveling amplifier with the bandwidth of more than 1%, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, M3D02.0033.

  1317. Luo, J., Jiao, C., Luan, Y., Yuan, G., Guo, W., Zhu, M., Zhang, Y., 2010, Operation of a Ka-band harmonic-multiplying gyrotron traveling-wave tube, IEEE Trans. on Electron Devices, 57, 27682773.

    Google Scholar 

  1318. Luo, J., Zhang, Y., Guo, W., Zhu, M., Yuan, G., Cui, J., Zhang, Y., Ren, L., Yang, J., 2010, Operation of a Ka-band harmonic multiplying gyrotron traveling wave tube, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Mo-P.07.

  1319. Baik, Ch.W., Jeon, S.G., Kim, D.H., Sato, N., Yokoo, K., Park, G.S., 2005, Third-harmonic frequency multiplication of a two-stage tapered gyrotron TWT amplifier. IEEE Trans. on Electron Devices, 52, 829-838.

    Article  Google Scholar 

  1320. Guo, H., Chen, S.-H., Granatstein, V.L., Rodgers, J., Nusinovich, G.S., Walter, M.T., Zhao, J., Chen, W., 1998, Operation of a high performance, harmonic-multiplying, inverted gyrotwystron. IEEE Trans. on Plasma Science, 26, 451-460.

    Article  Google Scholar 

  1321. Guo, H. Chen, S.H., Granatstein, V.L., Rodgers, J., Nusinovich, G. Walter, M., Levush, B., Chen, W.J., 1997, Operation of a highly overmoded, harmonic-multiplying gyrotron amplifier. Phys. Rev. Lett, 79, 515-518.

    Article  Google Scholar 

  1322. Rodgers, J., Guo, H., Granatstein, V.L., Chen, S.H., Nusinovich, G.S., Walter, M., Zhao, J., 1999, High efficiency, phase-locked operation of the harmonic-multiplying inverted gyrotwystron oscillator. IEEE Trans. on Plasma Science, 27, 412-421.

    Article  Google Scholar 

  1323. Guo, H., Rodgers, J., Zhao, J., Miao, Y.Y., Chen, W.J., Granatstein, V.L., 2000, Latest progress in studies of harmonic multiplying gyro-amplifiers. Conf. Digest 25th Int. Conf. on Infrared and Millimeter Waves, Beijing, P.R. China, 317-318.

  1324. Guo, H., Miao, Y.Y., Rodgers, J., Granatstein, V.L., Wu, R.S., Luo, J.R., Wu, D.S., Yin, Y.L., Miao, H., Zhang, Y.S. Cai, Z.P., Zheng, L., Su, Y.N., Guo, W., Luan, Y.T., Ding, Y.G., 2002, A new triplet gyrotron amplifier, the gyrotriotron. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 119-120.

  1325. Guo, H., Miao, Y.Y., Rodgers, F., Granatstein, V.L., Wu, R.S., Luo, J.R., Wu, D.S., Yin, Y.L., Miao, Y.H., Zhang, Y.S., Cai, Z.P., Zheng, L., Su, Y.N., Guo, W., Luan, Y.T., Ding, Y.G., 2002, Initial experimental results of a new triplet harmonic-multiplying gyrotron amplifier (gyrotriotron). Proc. 27th Int. Conf. on Infrared and Millimeter Waves, San Diego, USA, 205-206.

    Chapter  Google Scholar 

  1326. Lawson, W., Latham, P.E., Calame, J.P., Cheng, J., Hogan, B., Nusinovich, G.S., Irwin, V., Granatstein, V.L., Reiser, M., 1995, High power operation of first and second harmonic gyrotwystrons. J. Appl. Phys., 78, 550-559.

    Article  Google Scholar 

  1327. He, W., Cross, A.W., Whyte, C.G., Young, A.R., Phelps, A.D.R., Ronald, K., Rafferty, E.G., Thomson, J., Robertson, C.W., Speirs, D.C., Samsonov, S.V., Bratman, V.L., Denisov, G..G., 2004, Gyro-BWO experiment using a helical interaction waveguide. 5th IEEE Int. Vacuum Electronics Conf. (IVEC 2004), Monterey, CA, USA, 206-207.

  1328. He, W., Cross, A.W., Whyte, C.G., Young, A.R., Phelps, A.D.R., Ronald, K., Rafferty, E.G., Thomson, J., Robertson, C.W., Speirs, D.C., 2004, Thermionic gyro-BWO experiment using a helical interaction waveguide. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahz Electr., Karlsruhe, Germany, 233-234.

    Google Scholar 

  1329. He, W., Ronald, K., Young, A.R., Cross, A.W., Phelps, A.D.R., Whyte, C.G., Rafferty, E.G., Thomson, J., Robertson, C.W., Speirs, D.V., Samsonov, S.V., Bratman, V.L., Denisov, G.G., 2005, Gyro-BWO experiments using a helical interaction waveguide. IEEE Trans. on Electron Devices, 52, 839-844.

    Article  Google Scholar 

  1330. He, W., Whyte, C.G., Cross, A.W., Young, A.R., Phelps, A.D.R., Ronald, K., Rafferty, E.G., Thomson, J., Robertson, C.W., Samsonov, S.V., Bratman, V.L., Denisov, G.G., 2005, Experiments and simulations of a gyro-BWO using a helical interaction waveguide. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Appl. Phys., Russian Acad. of Sciences, N. Novgorod, 2006,Vol.1,125-134.

    Google Scholar 

  1331. Denisov, G.G., Samsonov, S.V., Bratman, V.L., Bogdashov, A.A., Glyavin, M.Yu., Luchinin, A.G., Lygin, V.K., Thumm, M., 2004, Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electr., Karlsruhe, Germany, 235-236.

    Google Scholar 

  1332. Samsonov, S.V., Denisov, G.G., Bratman, V.L., Bogdashov, A.A., Glyavin, M.Yu., Luchinin, A.G., Lygin, V.K., Thumm, M.K., 2004, Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide. IEEE Trans. on Plasma Science, 32, 884-889.

    Article  Google Scholar 

  1333. Liu, B.-T., Jiao, C.-Q., Zhang, Y.S., Yuan, G.-J., Guo, W., Zheng, L., 2007, Experimental study of a Ku-Band gyrotron backward-wave oscillator with a single stage depressed collector. IEEE Trans. on Plasma Science, 35, 1065-1069.

    Article  Google Scholar 

  1334. Liu, B., 2006, Experimental study of a Ku-Band gyrotron backward-wave oscillator with a single stage depressed collector and linear-mode output. Conf. Dig. 31st Int. Conf. Infrared and Millimeter Waves and 14th Int. Conf. Terahertz Electronics, Shanghai, China, 80.

  1335. Basten, M.A., Guss, W.C., Kreischer, K.E., Temkin, R.T., Caplan, M., 1995, Experimental investigation of a 140 GHz gyrotron-backward wave oscillator. Int. J. Infrared and Millimeter Waves, 16, 880-905.

    Google Scholar 

  1336. Park, S.Y., Kyser, R.H., Armstrong, C.M., Parker, R.K., Granatstein, V.L., 1990, Experimental Study of a Ka-band gyrotron backward-wave oscillator. IEEE Trans. on Plasma Science, 18, 321-325.

    Article  Google Scholar 

  1337. Kou, C.S., Chen, S.H., Barnett, L.R., Chu, K.R., 1993, Experimental study of an injection locked gyrotron backward wave oscillator. Phys. Rev. Lett., 70, 924-927.

    Article  Google Scholar 

  1338. Chang, T.H., Chen, S.H., Cheng, F.H., Kou, C.S., Chu, K.R., 1999, Experimental study of an injection locked gyro-BWO. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, M-A2.

  1339. Chu, K.R., Chen, S.H., Chang, T.H., 2000, Review of the gyrotron backward wave oscillator. Conf. Dig. 25th Int. Conf. Infrared and Milli Waves, Beijing, P.R. China, 9-10.

  1340. Fan, C.T., Chang, T.H., Pao, K.F., Chen, S.H., Chu, K.R., 2006, Stability and tunability of a gyrotron backward-wave oscillator. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 517.

  1341. Chang, T.H., Fan, C.T., Pao, K.F., Chu, K.R., Chen, S.H., 2007, Stability and tunability of the gyrotron backward-wave oscillator. Applied Physics Letters, 90, 19150-1-3.

  1342. Fan, C.T., Chang, T.H., Pao, K.F., Chu, K.R., Chen, S.H., 2007, Stable, high efficiency gyrotron backward-wave oscillator, Physics of Plasmas, 14, 093102 – 093102-8.

  1343. Pao, K.F., Tan, C.T., Chang, T.H., Chiu, C.C., Chu, K.R., 2007, Selective suppression of high order axial modes of the gyrotron backward-wave oscillator, Physics of Plasmas, 14, 093301-1-7.

    Google Scholar 

  1344. Chen, N.C., Yu. C.F., Yuan, C.P., Chang, T.H., 2009, A mode-selective circuit for TE01 gyrotron backward-wave oscillator with wide-tuning range, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, M3D01.0369.

  1345. Chen, N.C., Yu, C.F., Yuan, C.P., Chang, T.H., 2009, A mode-selective circuit for TE01 gyrotron backward-wave oscillator with wide-tuning range, Applied Physics Letters, 94, 101501-1-3.

    Google Scholar 

  1346. He, W., Donaldson, C.R., Cross, A.W., Li, F., Phelps, A.D.R., Zhang, L., Ronald, K., Robertson, C.W., Whyte, C.G., Young, A.R., 2009, Experiment of a high power W-band gyro-BWO using a helically corrugated waveguide, Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, Korea, M5E60.0363.

  1347. Donaldson, C.R., He, W., Cross, A.W., Li, F., Phelps, A.D.R., Zhang, L., Ronald, K., Robertson, C.W., Whyte, C.G., McElhinney, P., 2010, Experimental demonstration of a W-band gyro-BWO using a helically corrugated waveguide, Proc. 11th IEEE Int. Vacuum Electronics Conference (IVEC 2010), Monterey, USA, pp. 195-196.

  1348. Donaldson, C.R., He, W., Phelps, A.D.R., Li, F., Zhang, L., Cross, A.W., Ronald, K., Robertson, C.W., Whyte, C.G., Young, A.R., 2010, Experimental demonstration of a W-band gyro-BWO using a helically corrugated waveguide, Proc. 35th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Rome, Italy, Mo-E3.1.

  1349. He, W., Donaldson, C.R., Zhang, L., Ronald, K., McElhinney, P., Cross, A.W., 2013, High power wideband gyrotron backward wave oscillator operating towards the terahertz region. Physical Review Letters, 110, 165101 (5 pp).

    Article  Google Scholar 

  1350. He, W., Donaldson, C.R., Zhang, L., McElhinney, P., Ronald, K., Cross, A.W., 2013, W-band gyro-TWT uing a cusp electron gun and a helically corrugated interaction circuit. Proc. 14th IEEE Int. Vacuum Electronics Conference (IVEC 2013), Paris, France, 7A-4.

  1351. He, W., Donaldson, C.R., Zhang, L., McElhinney, P., Phelps, A.D.R., Ronald, K., Cross, A.W., 2013, Latest experiments of W-band gyro-BWO using helically corrugated waveguides. Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2013), Mainz, Germany, We1-3.

  1352. Schriever, R.L., Johnson, C.C., 1966, A rotating beam waveguide oscillator. Proc. of the IEEE, 2029-2030.

  1353. Bratman, V.L., Denisov, G.G., Phelps, A.D.R., Samsonov, S.V., 1998, Gyro-TWTs and gyro-BWOs with helical waveguides. Proc. Research Workshop of the Israel Science Foundation on Cyclotron Resonance Masers and Gyrotrons, Kibbutz Ma'ale Hachamisha, Israel, 252-264.

  1354. Bratman, V.L., Fedotov, A.E., Savilov, A.V., 1999, A new type of gyro-BWO (gyro-BWT-TWT). Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TH-E6.

  1355. Kamada, K., Nawashiro, K., Tamagawa, F., Igarashi, H., Kizu, S., Lee, C.-Y., Kawasaki, S., Ando, R., Masuzaki, M., 1998, Backward wave oscillator experiments with a relativistic electron beam using an X-band rectangular waveguide. Int. J. of Infrared and Millimeter Waves, 19, 1317-1324.

    Article  Google Scholar 

  1356. Kamada, K., Nawashiro, K., Tamagawa, F., Lee, C.-Y., Yoshida, H., Kawasaki, S., Ando, R., Masuzaki, M., 2000, Dependence of output power on cavity length in a gyrotron backward wave oscillator. Int. J. of Infrared and Millimeter Waves, 21, 1441-1449.

    Article  Google Scholar 

  1357. Walter, M.T., Gilgenbach, R.M., Menge, P.R., Spencer, T.A., 1994, Effects of tapered tubes on long-pulse microwave emission from intense e-beam gyrotron-backward-wave oscillators. IEEE Trans. Plasma Sciences, 22, 578-584.

    Article  Google Scholar 

  1358. Walter, M.T., Gilgenbach, R.M., Luginsland, J.W., Hochman, J.M., Rintamaki, J.I., Jaynes, R.L., Lau, Y.Y., Spencer, T.A., 1996, Effects of tapering on gyrotron backward-wave oscillators. IEEE Trans. on Plasma Science, 24, 636-647.

    Article  Google Scholar 

  1359. Spencer, T.A., Arman, M.J., Hendricks, K.J., Hackett, K.E., Stump, M., Gilgenbach, R.M., 1995, Non-axisymmetric mode competition in a high current, high voltage TE01 gyrotron-backward-wave oscillator experiment. Conf. Digest 20th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, 536-537.

    Google Scholar 

  1360. Spencer, T.A., Davis, C.E., Hendricks, K.J., Agee, F.J., Gilgenbach, R.M., 1996, Results from gyrotron backward wave oscillator experiments utilizing a high-current high-voltage annular electron beam. IEEE Trans. on Plasma Science, 24, 630-635.

    Article  Google Scholar 

  1361. Dressman, L.J., McDermott, D.B., Luhmann, N.C., Jr., Gallagher, D.A., 2007, UCD 34 GHz harmonic peniotron, Proc. 8th IEEE Int. Vacuum Electronics Conference (IVEC 2007), Kitakyushu, Japan, 253-254.

  1362. Ono, S., Yamanouchi, K., Shibata, Y., Koike, Y., 1962, Cyclotron fast-wave tube using spatial harmonic interaction- the traveling wave peniotron. Proc. 4th Int. Congress Microwave Tubes, Scheveningen, 355-363.

  1363. Ono, S., Tsutaki, K., Kageyama, T., 1984, Proposal of a high efficiency tube for high power millimetre or submillimetre wave generation: The gyro-peniotron. Int. J. Electronics, 56, 507-519.

    Article  Google Scholar 

  1364. Yokoo, K., Razeghi, M., Sato, N., Ono, S., 1988, High efficiency operation of the modified peniotron using TE11 rectangular waveguide cavity. Conf. Digest, 13th Int. Conf. on Infrared and Millimeter Waves, Honolulu, Hawaii, Proc., SPIE 1039, 135-136.

    Google Scholar 

  1365. Yokoo, K., Musyoki, S., Nakazato, Y., Sato, N., Ono, S., 1990, Design and experiments of auto-resonant peniotron oscillator. Conf. Digest 15th Int. Conf on Infrared and Millimeter Waves, Orlando, Proc., SPIE 1514, 10-12.

    Google Scholar 

  1366. Yokoo, K., Shimawaki, H., Tadano, H., Ishihara, T., Sagae, N., Sato, N., Ono, S., 1992, Design and experiments of higher cyclotron harmonic peniotron oscillators. Conf. Digest 17th Int. Conf. on Infrared and Millimeter Waves, Pasadena, Proc., SPIE 1929, 498-499.

    Google Scholar 

  1367. Musyoki, S., Sagae, K., Yokoo, K., Sato, N., Ono, S., 1992, Experiments on highly efficient operation of the auto-resonant peniotron oscillator. Int. J. Electronics, 72, 1067-1077.

    Article  Google Scholar 

  1368. Yokoo, K., Ishihara, T., Sagae, K., Shimawaki, H., Sato, N., 1997, Experiments of space harmonic peniotron for cyclotron high harmonic operation. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 206-207.

    Google Scholar 

  1369. Yokoo, K., Ishihara, T., Sagae, K., Sato, N., Shimawki, H., 1998, Efficient operation of high harmonic peniotron in millimeter wave region. Proc. 8th ITG-Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 150, 447-452.

    Google Scholar 

  1370. Ishihara, T., Sagae, K., Sato, N., Shimawaki, H., Yokoo, K., 1999, Highly efficient operation of space harmonic peniotron at cyclotron high harmonics. IEEE Trans. on Electron Devices, 46, 798-802.

  1371. Ono, S., Ansai, H., Sato, N., Yokoo, K., Henmi, K., Idehara, T., Tachikawa, T., Okazaki, I., Okamoto, T., 1986, Experimental study of the 3rd harmonic operation of gyro-peniotron at 70 GHz. Conf. Digest 11th Int. Conf. on Infrared and Millimeter Waves, Pisa, 37-39, and Okazaki, Y., 1994, priv. commun., Toshiba, Otawara, Japan.

  1372. Ostreiko, G.N., Kozyrev, E.V., Makarov, I.G., Nezhevenko, O.A., Persov, B.Z., Serdobintsev, G.V., Shchelkunoff, S.V., Tarnetsky, V.V., Yakolov, V.P., Zapryagaev, I.A., 1996, The results of 7 GHz pulse magnicon investigation. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 861-870.

    Google Scholar 

  1373. Kozyrev, E.V., Nezhevenko, O.A., Nikiforov, A.A., Ostreiko, G.N., Persov, B.Z., Serdobintsev, G.V., Shchelkunoff, S.V., Tarnetsky, V.V., Yakovlev, V.P., Zapryagaev, I.A., 1999, 7 GHz 55 MW pulsed magnicon. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 740-746.

  1374. Kozyrev, E.V., Nezhevenko, O.A., Nikiforov, A.A., Ostreiko, G.N., Shchelkunoff, S.V., Serdobintsev, G.V., Tarnetsky, V.V., Yakovlev, V.P., Zapryagaev, I.A., 1998, Present status of Budker INP 7 GHz pulsed magnicon. Proc. Radio Frequency Workshop (RF 98), High Energy Density Microwaves, Pajaro Dunes, California, USA, AIP Conference Proceedings 474, 1999, 187-194.

  1375. Gold, S.H., Kinkead, A.K., Fliflet, A. W, Hafiza, B., Manheimer, W.A., 1996, Initial operation of a high-power frequency-doubling X-band magnicon amplifier. IEEE Trans. on Plasma Science, 24, 947-956.

  1376. Gold, S.H., Nezhevenko, O.A., Yakovlev, V.P., Kinkead, A.K., Fliflet, A.W., Kozyrev, E.V., True, R., Hansen, R.J., Hirshfield, J.L., Status report on the 11.424-GHz magnicon amplifier. Ed. R.M. Phillips, High Energy Density Microwaves, 1999, AICP-CP474, 179-186.

  1377. Nezhevenko, O.A., LaPointe, M.A., Yakolev, V.P., Hirshfield, J.L., 2003, 34 GHz, 45 MW pulsed magnicon: first results. Proc. 6th Workshop of High Energy Density and High Power RF, Berkeley Springs, West Virginia, 89.

  1378. Hirshfield, J.L., Nezhevenko, O.A., LaPointe, M.A., Yakovlev, V.P., 2004, Technology developments for a future millimeter-wave high-gradient linear accelerator. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 529-530.

  1379. Gold, S.H., Fliflet, A.W., Hornstein, M.K., Kinkead, A.K., 2008, Observation of mode competition in an 11.4-GHz magnicon amplifier, IEEE Trans. on Plasma Science, 36, 597-605.

    Article  Google Scholar 

  1380. Nezhevenko, O.A., Yakovlev, V.P., Hirshfield, J.L., LaPointe, M.A., Kozyrev, E.V., Gold, S.H., Fliflet, A.W., Kinkead, A.K., Shchelkunov, S.V., 2005, High-power millimeter- and centimeter-wave magnicons for particle accelerator applications. Proc. 7th Workshop on High Energy Density and High Power RF, AIP Conf. Proc., 807, 2006, 146-157.

  1381. Nezhevenko, O.A., LaPointe, M.A., Yakovlev, V.P., Hirshfield, J.L., 2004, Commissioning of the 34-GHz, 45-MW pulsed magnicon. IEEE Trans. on Plasma Science, 32, 994-1001.

    Article  Google Scholar 

  1382. Hirshfield, J.L., Bogdashov, A.A., Chirkov, A.V., Denisov, G.G., Fix, A.S., Kuzikov, S.V., LaPointe, M.A., Litvak, A.G., Lukovnikov, D.A., Malygin, V.I., Nezhevenko, O.A., Petelin, M.I., Rodin, Yu.V., Serdobintsev, G.V., Shmelyov, M.Y., Yakovlev, V.P., 2005, Transmission line components for a future millimeter-wave high-gradient linear accelerator. In: Quasi-Optical Control of Intense Microwave Transmission, eds. J.L. Hirshfield and M.I. Petelin, Springer, 147-163.

  1383. Nezhevenko, O.A., Yakovlev, V.P., LaPointe, M.A., Kozyrev, E.V., Shchelkunov, S.V., Hirshfield, J.L., 2005, High-power millimeter-wave magnicon amplifier. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 95-96.

  1384. LaPointe, M.A., Hirshfield, J.L., Kozyrev, E.V., Nezhevenko, O.A., Shchelkunov, S.V., Yakovlev, V.P., 2006, 34 GHz magnicon for a Ka-band test facility. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 127.

  1385. Bongers, W.A., Militsyn, B.L., Bratman, V.L., Caplan, M., Denisov, G.G., van der Geer, C.A.J., Manintveld, P., Oomens, A.A.M., Plomp, J., Pluygers, J., Poelman, A.J., Riet, M., Savilov, A.V., Smeets, P.H.M., Tito, C.J., Turk, G.H.B., Varfolomeev, A.A., Verhoeven, A.G.A., Urbanus, W.H., 2001, New results of the fusion-FEM in long-pulse set up. Conf. Digest, 26th Int. Conf. on Infrared and Millimeter Waves, Toulouse, France, 6-24-6-27.

  1386. Bottolier-Curtet, H., Gardelle, J., Bardy, J., Bonnafond, C., Devin, A., Gardent, D., Germain, G., Gouard, Ph., Labrouche, J., Launspach, J., Le Taillandier, P., de Mascureau, J., 1992, Progress in free electron maser experiments at CESTA. Nucl. Instr. Meth., A318, 131-134.

  1387. Rullier, J.L., Gardelle, J., Labrouche, J., Le Taillandier, P., 1995, Strong coupling operation of a FEL amplifier with an axial magnetic field. Nucl. Instr. Meth., A358, 118-121, and 1996, Phys. Rev. E, 53, 2787-2794.

  1388. Gardelle, J., Labrouche, J., Marchese, G., Rullier, J.L., Villate, D., 1996, Analysis of the beam bunching produced by a free electron laser. Physics of Plasmas, 3, 4197-4206.

    Article  Google Scholar 

  1389. Gardelle, J., Lefevre, T., Marchese, G., Rullier, J.L., Donohue, J.T., 1997, High-power operation and strong bunching at 3 GHz produced by a 35-GHz free-electron-laser amplifier. Phys. Rev. Lett., 79, 3905-3908.

  1390. Gardelle, J., Lefevre, T., Marchese, G., Rullier, J.L., Donohue, J.T., 1997, Measurements of microwave power and frequency in a pulsed free electron laser amplifier. IEEE Trans. on Plasma Science, 25, 1419-1424.

    Article  Google Scholar 

  1391. Donohue, J.T., Gardelle, J., Lefevre, T., Marchese, G., Padois, M., Rullier, J.L., 1999, Comparison of beam bunching in amplifier and SASE modes at the CEA-CESTA free-electron laser. Nucl. Instr. Meth. in Phys. Research, A 429, 202-208.

  1392. Lefevre, T., Gardelle, J., Marchese, G., J.L. Rullier, Donohue, J.T., 1999, Self-amplified spontaneous emission and bunching at 3 GHz in a microwave free-electron laser. Phys. Rev. Lett., 82, 323-326.

    Article  Google Scholar 

  1393. Donohue, J.T., Gardelle, J., Lefevre, T., Rullier, J.L., Vermare, C., Lidia, S.M., Meurdesoif, Y., 2000, Power generation in a resonant cavity using a beam bunched at 35 GHz by a free electron laser. Nucl. Instr. and Meth. in Phys. Res., A 445, 307-312.

  1394. Lefevre, T., Gardelle, J., Rullier, J.L., Vermare, C., Donohue, J.T., Meurdesoif, Y., Lidia, S.M., 2000, Free-electron laser as a driver for a resonant cavity at 35 GHz. Phys. Rev. Lett., 84, 1188-1191.

    Article  Google Scholar 

  1395. Lefevre, T., Gardelle, J., Rullier, J.-L., Donohue, J.T., Lidia, S.M., 2000, Microwave production by a free-electron laser bunched beam driving a resonant cavity at 35 GHz. IEEE Trans. on Plasma Science, 28, 812-820.

    Article  Google Scholar 

  1396. Gardelle, J., Modin, P., Courtois, L., Donohne, J.T., 2009, Progress of the microwave coherent Smith-Purcell experiment at CESTA, IEEE 36th Int. Conf. on Plasma Science and 23rd Symp. on Fusion Eng., San Diego, Paper IP3D-13.

  1397. Bluem, H.P., Jackson, Jr., R.H., Jarvis, J.D., Todd, A.M.M., Gardelle, J., Modin, P., Donohue, J.T., 2015, First lasing from a high power cylindrical grating Smith-Purcell device. IEEE Trans. on Plasma Science, 43, No. 9, 3176-3184.

    Google Scholar 

  1398. Gardelle, G., Modin, P., Bluem, H.P., Jackson, R.H., Jarvis, J.D., Todd, A.M.M., Donohue, J.T., 2016, A compact THz source: 100/200 GHz operation of a cylindrical Smith-Purcell free-electron laser. IEEE Trans. on Terahertz Science and Technology, 6, No. 3, 497-502.

    Google Scholar 

  1399. Gardelle, J., Modin, P., Donohue, J.T., 2017, Radiation at 100 and 200 GHz from a compact planar Smith-Purcell free-electron laser. IEEE Trans. on Tereahertz Science and Technology, 7, No. 2, 151-163.

    Google Scholar 

  1400. Dodd, J.W., Marshall, T.C., 1990, Spiking Radiation in the Columbia free electron laser. IEEE Trans. Plasma Science, 18, 447-450.

  1401. Marshall, T.C., Cecere, M.A., 1994, A measurement of space-charge fields in a microwave free electron laser. Physica Scripta, T52, 58-60.

    Article  Google Scholar 

  1402. Cecere, M., Marshall, T.C., 1994, A free electron laser experiment on angular steering. IEEE Trans. Plasma Science, 22, 654-658.

    Article  Google Scholar 

  1403. Renz, G. Spindler, G., 1995, Status of the Stuttgart Raman free-electron laser project. Nucl. Instr. Meth., A358, ABS13.

    Article  Google Scholar 

  1404. Ciocci, F., Bartolini, R., Doria, A., Gallerano, G.P., Giovenale, E., Kimmitt, M.F., Messina, G., Renieri, A., 1993, Operation of a compact free-electron laser in the millimeter-wave region with a bunched electron beam. Phys. Rev. Lett., 70, 928-931.

    Article  Google Scholar 

  1405. Gallerano, G.P., 1994, The free electron laser: state of the art, developments and applications. Nucl. Instr. Meth., A340, 11-16.

    Article  Google Scholar 

  1406. Doria, A., Gallerano, G.P., Giovenale, G., Kimmitt, M.F., Messina, G., 1996, The ENEA F-CUBE facility: trends in rf driven compact FELs and related diagnostics. Nucl. Instr. Meth., A375, ABS11-ABS13.

    Google Scholar 

  1407. Gallerano, G.P., Doria, A., Giovenale, E., Messina, G., Spassovsky, I., 2003, Long wavelength THz compact free electron lasers. Conf. Digest 28th Int. Conf. on Infrared and Millimeter Waves, Otsu, Japan, 57-58.

    Google Scholar 

  1408. Doria, A., Gallerano, G.P., Giovenale, E., Messina, G., Petralia, A., Spassovsky, I., 2009, The ENEA activity on compact FAR infrared FELs, Proc. 10th IEEE Int. Vacuum Electronics Conference (IVEC 2009), Rome, Italy, pp. 544-545.

  1409. Gallerano, G.P., Doria, A., Giovenale, E., Spassovsky, I., 2014, High power THz sources and applications at ENEA-Frascati. J Infrared Milli Terahz Waves, 35, 17-24.

    Article  Google Scholar 

  1410. Hartemann, F., Buzzi, J.M., 1988, Experimental studies of a millimeter-wave free-electron laser. Proc. 7th Int.Conf. on High-Power Particle Beams, Karlsruhe 1988, eds., Bauer, W., Schmidt, W., Vol. II, 1287-1292.

  1411. Bratman, V.L., Denisov, G.G., Ofitserov, M.M., Korovin, S.D., Polevin, S.D., Rostov, V.V., 1987, Millimeter-wave hf relativistic electron oscillators. IEEE Trans. Plasma Science, 15, 2-15.

    Article  Google Scholar 

  1412. Peskov, N.Yu., Bratman, V.L., Ginzburg, N.S., Denisov, G.G., Kolchugin, B.D., Samsonov, S.V., Volkov, A.B., 1996, Experimental study of a high-current FEM with a broadband microwave system. Nucl. Instr. Meth., A375, 377-380.

    Article  Google Scholar 

  1413. Bratman, V.L., Denisov, G.G., Ginzburg, N.S., Kol'chugin, B.D., Peskov, N.Y., Samsonov, S.V., Volkov, A.B., 1996, Experimental study of an FEM with a microwave system of a new type. IEEE Trans. on Plasma Science, 24, 744-749.

  1414. Arzhannikov, A.V., Bobylev, V.B., Sinitsky, S.L., Tarasov, A.V., Ginzburg, N.S., Peskov, N.Yu., 1995, Ribbon-FEL experiments at one-dimension distributed feedback. Nucl. Instr. Meth., A358, 112-113.

    Article  Google Scholar 

  1415. Agafonov, M.A., Arzhannikov, A.V., Ginzburg, N.S., Peskov, N.Yu., Sinitsky, S.L., Tarasov, A.V., 1996, Powerful FEM generator driven by microsecond sheet beam. Proc. 11th Conf. on High Power Particle Beams, Prague, BEAMS-96, Vol. 1, 213-216.

    Google Scholar 

  1416. Agafonov, M.A., Arzhannikov, A.V., Ginzburg, N.S., Ivanenko, V.G., Kalinin, P.V., Kuznetsov, S.A., Peskov, N. Yu, Sinitsky, S.L., 1997, Generation of hundred joules RF-pulse at 4 mm wavelength by FEL with sheet beam. Digest of Technical Papers, Workshop on High Power Microwave Generation and Pulse Shortening, Edinburgh, UK, 195-190.

  1417. Agafonov, M.A., Arzhannikov, A.V., Ginzburg, N.S., Ivanenko, V.G., Kalinin, P.V., Kuznetsov, S.A., Peskov, N. Yu, Sinitsky, S.L., 1998, Generation of hundred joules RF-pulse at 4 mm wavelength by FEM with sheet electron beam. IEEE Trans. on Plasma Science, 26, 531-535.

    Article  Google Scholar 

  1418. Agarin, N.V., Arzhannikov, A.V., Bobylev, V.B., Ginzburg, N.S., Ivanenko, V.G., Kalinin, P.V., Kuznetsov, S.A., Peskov, N.Yu., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.D., 1999, Generation of hundred joules pulses of 4-mm radiation by planar FEM with two-dimensional distributed feedback. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000, Vol. 2, 802-814.

    Google Scholar 

  1419. Agarin, N.V., Arzhannikov, A.V., Bobylev, V.B., Ginzburg, N.S., Ivanenko, V.G., Kalinin, P.V., Kuznetsov, S.A., Peskov, N.Yu., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.D., 2000, First operation of a powerful FEL with two-dimensional distributed feedback. Nucl. Instr. and Meth. in Phys. Res., A 445, 222-229.

  1420. Arzhannikov, A.V., Astrelin, V.T., Bobylev, V.B., Ginzburg, N.S., Kalinin, P.V., Kuznetsov, S.A., Peskov, N.Yu., Petrov, P.V., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.D., Thumm, M., 2002, Generation of powerful coherent radiation in single- and multi-modules planar FEMs with 2-D distributed feedback: results and prospects. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2003, Vol. 1, 203-210.

    Google Scholar 

  1421. Arzhannikov, A.V., Ginzburg, N.S., Kalinin, P.V., Kuznetsov, A.S., Kuznetsov, S.A., Peskov, N.Yu., Sergeev, A.S., Sinitsky, S.L., Thumm, M., 2004, Planar FEM resonator with reflectors composed by Bragg gratings. Proc. 10th Int. Conf. Displays and Vacuum Electronics, Garmisch-Partenkirchen, ITG-Fachbericht 183, 193, Invited Paper.

  1422. Arzhannikov, A.V., Ginzburg, N.S., Kalinin, P.V., Kuznetsov, A.S., Kuznetsov, S.A., Peskov, N.Yu., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.D., Zaslavsky, V.Yu., Thumm, M., 2004, Frequency spectrum generated by planar FEM at ELMI-device. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 565-566.

    Google Scholar 

  1423. Arzhannikov, A.V., Ginzburg, N.S., Kalinin, P.V., Kuznetsov, S.A., Peskov, N.Yu., Rozental, R.M., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.D., Thumm, M., Zaslavsky, V.Yu., Zotova, I.V., 2005, Intercavity scattering scheme for two-stage generation of submillimeter radiation on the base of planar 2D Bragg FEM. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 228-232.

    Google Scholar 

  1424. Peskov, N.Yu., Ginzburg, N.S., Denisov, G.G., Kuzikov, S.V., Sergeev, A.S., Arzhannikov, A.V., Kalinin, P.V., Rozental, R.M., Sinitsky, S.L., Thumm, M., Zaslavsky, V.Yu., 2005, Peculiarities of mode spectrum of planar 2D Bragg resonator (theory and experiment). Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Appl. Phys., RAS, N. Novgorod, 2006, Vol. 1,321-329.

  1425. Peskov, N.Yu., Ginzburg, N.S., Denisov, G.G., Zaslavskii, V.Yu., Kuzikov, S.V., Sergeev, A.S., Arzhannikov, A.V., Kalinin, P.V., Sinitskii, S.L., Thumm, M., 2007, Experimental observation of high-Q modes at the center of a resonance band of two-dimensional Bragg structures, Techn. Phys. Letters, 33, 117-121.

    Article  Google Scholar 

  1426. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Zaslavsky, V.Yu., Arzhannikov, A.V., Kalinin, P.V., Sinitsky, A.L., Phelps, A.D.R., Konoplev, I.V., Cross, A.W., Thumm, M., 2007, Two dimensional Bragg structures (Modeling and experimental testing of selective properties), Conf. Digest Joint 32nd Int. Conf. on Infrared and Millimetre Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 833-834.

    Google Scholar 

  1427. Arzhannikov, A.V., Astrelin, V.T., Ginzburg, N.S., Kalinin, P.V., Kuznetsov, A.S., Kuznetsov, S.A., Peskov, N.Yu., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.D., Zaslavsky, V.Yu., Zotova, I.V., 2007, Submillimeter radiation production by intercavity stimulated scattering in planar FEM at the ELMI-device. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 835-836.

    Google Scholar 

  1428. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Denisov, G.G., Kuzikov, S.V., Zaslavsky, V.Yu., Arzhannikov, A.V., Kalinin, P.V., Sinitsky, S.L., Thumm, M., 2008, Observation of the high-Q modes inside the resonance zone of two-dimensional Bragg structures, Applied Physics Letters, 92,. 103512-1-3.

  1429. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Zaslavsky, V.Yu., Konoplev, I.V., Fisher, L., Ronald, K., Phelps, A.D.R., Cross, A.W., Thumm, M., 2009, Journal of Applied Physics, 105, 124519-1 – 124519-10.

  1430. Arzhannikov, A.V., Cross, A.W., Ginzburg, N.S., He, Wenlong, Kalinin, P.V., Konoplev, I.V., Kuznetsov, S.A., Peskov, N.Yu., Phelps, A.D.R., Robertson, C.W., Ronald, K., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.S., Thumm, M., Whyte, C.G., Zaslavsky, V.Yu., 2009, Production of powerful spatially coherent radiation in planar and coaxial exploiting two-dimensional distributed feedback, IEEE Trans. on Plasma Science, 37, 1791-1800.

  1431. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Zaslavsky, V.Yu., Arzhannikov, A.V., Kalinin, P.V., Sinitsky, S.L., Stepanov, V.D., Kuznetsov, S.A., Cross, A.W., He, W., Konoplev, I.V., Phelps, A.D.R., Robertson, C.W., Ronald, K., Whyte, C.G., Thumm, M., 2008, Generation of powerful coherent radiation in FEM exploiting two-dimensional distributed feedback, Proc. 7th Int. Workshop on Strong Microwaves: Sources and Applications, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2009, Vol. 1, pp. 154-161.

  1432. Arzhannikov, A.V., Ginzburg, N.S., Zaslavskii, V.Yu., Ivanenko, V.G., Ivanov, I.A., Kalinin, P.V., Kuznetsov, A.S., Kuznetsov, S.A., Peskov, N.Yu., Sergeev, A.S., Sinitskii, S.L., Stepanov, V.D., 2008, Generation of spatially coherent radiation in free-electron masers with two-dimensional distributed feedback, JETP Letters, 87, 618-622.

    Article  Google Scholar 

  1433. Ginzburg, N.S., Golubev, I.I., Golubykh, S.M., Zaslavskii, V.Yu., Zotova, I.V., Kaminsky, A.K., Kozlov, A.P., Malkin, A.M., Peskov, N.Yu., Perel'shtein, E.A., Sedykh, S.N., Sergeev, A.S., 2010, Free-electron maser with high-selectivity Bragg resonator using coupled propagating and trapped modes, Technical Physics Letters, 36, 952-956.

    Google Scholar 

  1434. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Arzhannikov, A.V., Kalinin, P.V., Sinitsky, S.L., Thumm, M., 2011, Powerful masers and lasers with two-dimensional distributed feedback, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod-St. Petersburg, Russia, 2011, pp. 57-58.

    Google Scholar 

  1435. Sinitsky, S.L., Arzhannikov, A.V., Astrelin, V.T., Ginzburg, N.S., Kalinin, P.V., Kuznetsov, S.A., Peskov, N.Yu., Sergeev, A.S., Stepanov, V.D., Thumm, M., Zaslavky, V.Yu., 2011, Planar FEM driven by two microsecond sheet e-beams, Proc. 8th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod – St. Petersburg, Russia, 2011, pp. 131-132.

    Google Scholar 

  1436. Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Zaslavsky, V.Yu., Arzhannikov, A.V., Kalinin, P.V., Sinitsky, S.L., Thumm, M., 2012, High selective two-dimensional Bragg resonators of planar geometry: theoretical, computational, and experimental study. J. of Applied Physics, 112, 114504/1-12.

    Article  Google Scholar 

  1437. Arzhannikov, A.V., Ginzburg, N.S., Zaslavsky, V.Yu., Kalinin, P.V., Peskov, N.Yu., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.D., Thumm, M., 2013, Generation of powerful narrow-band 75-GHz radiation in a free-electron maser with two-dimensional distributed feedback. Technical Physics Letters, 39, 801-804.

    Article  Google Scholar 

  1438. Arzhannikov, A.V., Ginzburg, N.S., Kalinin, P.V., Peskov, N.Yu., Sergeev, A.S., Sinitsky, S.L., Stepanov, V.D., Thumm, M., Zaslavsky, V.Yu., 2014, MM-wave generation in two-channel planar FEM on eigen modes of resonator at various detuning of undulator synchronism. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 170-171.

  1439. Peskov, N.Yu., Ginzburg, N.S., Denisov, G.G., Sergeev, A.S., Arzhannikov, A.V., Kalinin, P.V., Sinitsky, S.L., Thumm, M., 2014, Project of two-stage planar THz-band FEL based on four-mirror Bragg ring cavity and parallel intense sheet electron beams. Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications”, Nizhny Novgorod, Russia, pp. 229-230.

  1440. Zaslavsky, V., Kalinin, P., Arzhannikov, A., Peskov, N., Sergeev, A., Sinitsky, S., Stepanov, V., Thumm, M., 2014, Spectral dynamics of mm-wave radiation from two-channel planar FEM with two-dimensional distributed feedback. 39th Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2014), Tucson, AZ, USA, W5-P26.4.

    Google Scholar 

  1441. Peskov, N.Yu., Ginzburg, N.S., Sergeev, A.S., Zaslavsky, V.Yu., Arzhannikov, A.V., Kalinin, P.V., Kuznetsov, S.A., Sinitsky, S.L., Stepanov, V.D., Thumm, M., 2017, Powerful multichannel planar FEMs based on intense parallel sheet beams. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, HPM-4.

  1442. Ginzburg, N.S., Peskov, N.Yu., Zotova, I.V., Sergeev, A.S., Phelps, A.D.R., Cross, A.W., He, W., Ronald, K., Sphak, V.G., Yalandin, M.I., Shunailov, S.A., Ulmaskulov, M.R., 1999, Experimental observation of wiggler superradiance under group synchronism condition. Nucl. Instr. Meth. in Phys. Research, A 429, 94-100.

  1443. Ginzburg, N.S., Sergeev, A.S., Zotova, I.V., Shpak, V.G., Yalandin, M.I., Phelps, A.D.R., Cross, A.W., Wiggins, S.M., Tarakanov, V.P., 1999, Generation of powerful subnanon-second microwave pulses based on superradiance. Proc. Int. Univ. Conf. “Electronics and Radiophysics of Ultra-High Frequencies” (UHF-99), 1999, St. Petersburg, Russia, 194-197.

  1444. Ginzburg, N.S., Zotova, I.V., Novozhilova, Yu.V., Sergeev, A.S., Phelps, A.D.R., Cross, A.W., Wiggins, S.M., Ronald, K., Shpak, V.G., Yalandin, M.I., Shunailov, S.A., Ulmaskulov, M.R., Tarakanov, V.P., 1999, Superradiance as method of generation of ultrashort microwave pulses. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2000, Vol. 2, 787-801.

    Google Scholar 

  1445. Kaminsky, A.K., Kaminsky, A.A., Sarantsev, V.P., Sedykh, S.N., Sergeev, A.P., Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., 1996, High efficiency FEL-oscillator with Bragg resonator operated in reversed guide field regime. Nucl. Instr. Meth., A375, 215-218.

    Article  Google Scholar 

  1446. Ginzburg, N.S., Kaminsky, A.A., Kaminsky, A.K., Peskov, N.Yu., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., 1996, High-efficiency operation of the JINR-IAP Ka-band FEL-oscillator. Proc. 3rd Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, 1997, Vol.2, 782-790, and, 1998, Nucl. Instr. Meth., A407, 167-171.

  1447. Ginzburg, N.S., Kaminsky, A.K., Kaminsky, A.A., Peskov, N.Yu., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., 1998, Theoretical and experimental comparison of FEL-oscillators with conventional and reversed guide field. IEEE Trans. on Plasma Science, 26, 536-541.

    Article  Google Scholar 

  1448. Ginzburg, N.S., Kaminsky, A.K., Kaminsky, A.A., Peskov, N.Yu., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., 1998, Single-mode and multimode operation conditions in JINR-IAP millimeter-wave FEL-oscillator. IEEE Trans. on Plasma Science, 26, 542-547.

    Article  Google Scholar 

  1449. Peskov, N.Yu., Ginzburg, N.S., Kaminskii, A.A., Kaminskii, A.K., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., 1999, High-efficiency narrow-band free-electron maser using a Bragg cavity with a phase discontinuity in the ripples. Techn. Phys. Lett., 25, 429-432.

    Article  Google Scholar 

  1450. Ginzburg, N.S., Kaminsky, A.K., Peskov, N.Yu., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., 1999, Development of high-efficiency FEL-oscillator for feeding high-gradient accelerating structures. Proc. 4th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2000, Vol. 2, 815-820.

    Google Scholar 

  1451. Ginzburg, N.S., Goldenberg C.A., Kaminsky, A.k., Peskov, N.Yu., Sedykh, S.N., Sergeev, A.P., 2000, Millimeter-wave FEL-oscillator with a new type Bragg resonator: advantages in efficiency and selectivity. Nucl. Instr. and Meth. Phys. Res., A 445, 253-256.

  1452. Ginzburg, N.S., Kaminsky, A.A., Kaminsky, A.K., Peskov, N.Yu., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., 2000, High-efficiency single-mode free-electron maser oscillator based on a Bragg resonator with step of phase of corrugation. Phys. Rev. Lett., 84, 3574-3577.

    Article  Google Scholar 

  1453. Elzhov, A.V., Ganichev, A.V., Ginzburg, N.S., Kaminsky, A.K., Perelstein, E.A., Peskov, N.Yu., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., 2002, Possible ways of improvement of a FEM-oscillator with bragg resonator, JINR-IAP FEM oscillator with a Bragg resonator: experimental investigation and application. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2003, Vol. 1, 190-194.

    Google Scholar 

  1454. Elzhov, A.V., Ginzburg, N.S., Ilyakov, E.V., Ivanov, I.N., Kaminsky, A.K., Kosukhin, V.V., Kulagin, I.S., Kuzikov, S.V., Perelstein, E.A., Peskov, N.Yu., Petelin, M.I., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., Zaitsev, N.I., 2002, JINR-IAP FEM oscillator with a Bragg resonator: experimental investigation and application. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, 2003, Vol. 1, 184-189.

    Google Scholar 

  1455. Ginzburg, N.S., Elzhov, A.V., Kaminsky, A.K., Kuzikov, S.V., Peskov, N.Yu., Perelstein, E.A., Sedykh, S.N., Sergeev, A.P., Sergeev, A.S., 2004, Repetitive 30 GHz free-electron maser applicable for RF testing properties of materials. 15th Int. Conf. on High-Power Particle Beams (BEAMS'2004), St. Petersburg, Russia, 139.

  1456. Peskov, N.Yu., Savilov, A.V., Kalynov, Yu.K., Kuzikov, S.V., Shchegol'kov, D.Yu., Elzhov, A.V., Kaminsky, A.K., Kozlov, A.P., Perelstein, E.A., Sedykh, S.N., 2006, Progress in development of powerful sub-mm Bragg FEM based on moderately relativistic electron beam. Conf. Digest 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 573.

  1457. Peskov, N.Yu., Kaminsky, A.K., Kalynov, Yu.K., Kuzikov, S.V., Kornishin, S.Yu., Perelshtein, E.A., Savilov, A.V., Sedykh, S.N., 2007, Sub-millimeter Bragg FEM based on moderately relativistic electron beam: project and first experiments. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 837-838.

    Google Scholar 

  1458. Peskov, N.Yu., Ginzburg, N.S., Kaminsky, A.K., Kuzikov, S.V., Perelshtein, E.A., Sedykh, S.N., Zaslavsky, V.Yu., 2015, Powerful 60 GHz FEM with advanced Bragg resonator. 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hong Kong, TS-5.

  1459. Peskov, N.Yu., Bandurkin, I.V., Donets, D.E., Kaminsky, A.K., Kuzikov, S.V., Perelstein, E.A., Savilov, A.V., Sedykh, S.N., 2016, Powerful broadband FEM-amplifier operating over Ka frequency range. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, F2E.3.

  1460. Peskov, N.Yu., Ginzburg, N.S., Kaminsky, A.K., Padozhnikov, D.M., Perelshtein, E.A., Sedykh, S.N., Zaslavsky, V.Yu., 2016, Powerful FEM-oscillators with advanced Bragg resonators operating in a single mode regime from Ka- to W-band. Proc. 41st Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2016), September 25-30, 2016, Copenhagen, Denmark, F2E.1.

  1461. Bandurkin, I.V., Donets, D.E., Kaminsky, A.K., Kuzikov, S.V., Perel’shteyn, E.A., Peskov, N.Yu., Savilov, A.V., Sedykh, S.N., 2017, Development of a high-power wideband amplifier on the basis of a free-electron maser having an operating frequency near 30 GHz: Modeling and results of the initial experiments. Radiophysics and Quantum Electronics, 59, No. 8-9, 674-681.

  1462. Bandurkin, I.V., Peskov, N.Yu., Donetc, D.E., Kaminsky, A.K., Perelstein, E.A., Sedykh, S.N., Zaslavsky, V.Yu., 2017, High-power broadband 30-GHz FEM amplifier operated in the grazing incident regime. Appl. Phys. Lett., 110, 013501 (5 pp).

    Article  Google Scholar 

  1463. Peskov, N.Yu., Bandurkin, I.V., Ginzburg, N.S., Kuzikov, S.V., Savilov, Zaslavsky, V.Yu., Kaminsky, A.K., Perelshtein, E.A., Sedykh, S.N., 2017, Novel schemes of powerful FEM-oscillators and amplifiers for potential applications. Proc. 18th IEEE Int. Vacuum Electronics Conference (IVEC 2017), London, UK, HPM-2.

  1464. Peskov, N.Yu., Ginzburg, N.S., Kaminsky, A.K., Sedykh, S.N., Zaslavsky, V.Yu., 2017, Powerful narrow-band relativistic masers with Bragg resonators operating from mm to sub-mm wavelength band: recent results and prospects. EPJ Web of Conferences, 149, 04012 (2 pp).

    Article  Google Scholar 

  1465. Peskov, N., Kaminsky, A., Sedykh, S., Bandurkin, I., Savilov, A., Zaslavsky, V., 2018, High-power ultra-wideband operation of the JINR-IAP FEM-amplifier. Proc. 43rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, Japan, We-P1-4-5.

  1466. Akiba, T., Tanaka, K., Mokuno, M., Miyamoto, S., Mima, K., Nakai, S., Kuruma, S., Imasaki, K., Yamanaka, C., Fukuda, M., Ohigashi, N., Tsunawaki, Y., 1990, Helical distributed feedback free-electron laser. Appl. Phys.Lett., 56, 503-505.

    Article  Google Scholar 

  1467. Asakawa, M., Sakamoto, N., Inoue, N., Yamamoto, T., Mima, K., Nakia, S., Chen, J., Eujita, M., Imasaki, K., Yamanaka, C., Agari, T., Asakuma, T., Ohigashi, N., Tsunawaki, Y., 1994, Experimental study of a waveguide free-electron laser using the coherent synchotron radiation emitted from electron bunches. Appl. Phys.Lett., 64, 1601-1603.

    Article  Google Scholar 

  1468. Mizuno, T., Ootuki, T., Ohshima, T., Saito, H., 1995, Experimental mode analysis of the circular free electron laser. Nucl. Instr. Meth., A358, 131-134.

    Article  Google Scholar 

  1469. Sakamoto, K., Kishimoto, Y., Watanabe, A., Kobayashi, T., Musyoki, S., Oda, H., Tokuda, S., Nakamura, Y., Kawasaki, S., Ishizuka, H., Sato, M., Nagashima, T., Shiho, M., 1992, MM wave FEL experiment with focusing wiggler, Course and Workshop on High Power Microwave Generation and Applications. Int. School of Plasma Physics, Varenna, 1991, eds., D. Akulina, E. Sindoni, C. Wharton, Editrice Compositori Bologna, 597-604.

  1470. Sakamoto, K., Kobayashi, T., Kawasaki, S., Kishimoto, Y., Musyoki, S., Watanabe, A., Takahashi, M., Ishizuka, H., Sato, M., Shiho, H., 1994, Millimeter wave amplification in a free electron laser with a focusing wiggler. J. Appl. Phys., 75, 36-42.

  1471. Lee, B.C., Kim, S.K., Jeong, Y.U., Cho, S.O., Cha, B.H., Lee, J., 1996, First lasing of the KAERI millimeter-wave free electron laser. Nucl. Instr. Meth., A375, 28-31.

    Article  Google Scholar 

  1472. Jeong, Y.U., Lee, B.C., Kim, S.K., Cho, S.O., Cha, B.H., Lee, J., Kazakevitch, G.M., Vobly, P.D., Gavrilov, N.G., Kubarev, V.V., Kulipanov, G.N., 2002, First lasing of the KAERI compact far-infrared free-electron laser driven by a magnetron-based microtron. Nucl. Instr. Meth., A475, 47-50.

    Google Scholar 

  1473. Jeong, Y.U., Kazakevitch, G.M., Lee, B.C., Kim, S.K., Cho, S.O., Gavrilov, N.G., Lee, J., 2002, Status and prospects of a compact FIR FEL driven by a magnetron-based microtron. Nucl. Instr. Meth., A483, 195-199.

    Article  Google Scholar 

  1474. Ozaki, T., Ebihara, K., Hiramatsu, S., Kimura, Y., Kishiro, J., Monaka, T., Takayama, K., Whittum, D.H., 1992, First result of the KEK X-band free electron laser in the ion channel guiding regime. Nucl. Instr. Meth., A318, 101-104.

    Article  Google Scholar 

  1475. Takayama, K., Kishiro, J., Ebihara, K., Ozaki, T., Hiramatsu, S., Katoh, H., 1994, 1.5 MeV ion-channel guided X-band free-electron laser amplifier. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, JSAP Catalog No.: AP 941228, 3-4.

    Google Scholar 

  1476. Takayama, K., Kishiro, J., Ebihara, K., Ozaki, T., Hiramatsu, S., Katoh, H., 1995, Experimental results on the 1.5 MeV ion channel guided X-band free electron laser. Nucl. Instr. Meth., A358, 122-125.

    Article  Google Scholar 

  1477. Saito, K., Takayama, K., Ozaki, T., Kishiro, J., Ebihara, K., Hiramatsu, S., 1996, X-band prebunched FEL-amplifier. Nucl. Instr. Meth., A375, 237-240.

    Article  Google Scholar 

  1478. Takayama, K., Monaka, T., 1996, Ion-channel guided X-band free-electron laser amplifier. AIP Conference Proceedings, No. 356, 212-232.

    Google Scholar 

  1479. Taccetti, J.M., Jackson, R.H., Freund, H.P., Pershing, D.E., Granatstein, V.L., 1999, A Ka-band CHI-wiggler free-electron maser: experimental results. Nucl. Instr. Meth. in Phys. Research, A 429, 116-120.

  1480. Orzechowski, T.J., Anderson, B.R., Clark, J.G., Fawley, W.M., Paul, A.C., Prosnitz, D., Scharlemann, E.T., Yarema, S.M., Hopkins, D.B., Sessler, A.M., Wurtele, J.S., 1986, High-efficiency extraction of microwave radiation from a tapered-wiggler free-electron laser. Phys. Rev. Lett., 57, 2172-2175.

  1481. Allen, S.L., Scharlemann, E.T., Proc. 9th Int. Conf. on High-Power Particle Beams, edited by D. Mosher and G. Cooperstein (available from the National Technical Information Service, Springfield, VA22151), 247.

  1482. Allen, S.L., Lasnier, C.J., Felker, B., Fenstermacher, M., Ferguson, S.W., Fields, S., Hooper, E.B., Hulsey, S., Makowski, M., Moller, J., Meyer, W., Petersen, D., Scharlemann, E.T., Stallard, B., Wood, R., 1993, Generation of high power 140 GHz microwaves with an FEL for the MTX experiment. Proc. 1993 Particle Accelerator Conf., ed. S.T. Corneliussen, IEEE Piscataway, NJ, Vol. 2, 1551-1553.

    Google Scholar 

  1483. Lasnier, C.J., Allen, S.L., Felker, B., Fenstermacher, M.E., Ferguson, S.W., Hulsey, S.D., Hooper, E.B., Jackson, M.C., Makowski, M.A., Meyer, W.H., Moller, J.M., Petersen, D.E., Sampayan, S.E., Stallard, B.W., Fields, W.F., Oasa, K., 1993, Burst mode FEL with the ETA-III induction linac. Proc. 1993 Particle Accelerator Conf., ed. S.T. Corneliussen, IEEE Piscataway, NJ, Vol. 2, 1554-1556.

  1484. Allen, S.L. Brown, M.D., Byers, J.A., Casper, T.A., Cohen, B.I., Cohen, R.H., Fenstermacher, M.E., Foote, J.H., Hooper, E.B., Hoshino, K., Lasnier, C.J., Lopez, P., Makowski, M.A., Marinak, M.M., Meyer, W.H., Moller, J.M., Nevins, W.M., Oasa, K., Oda, T., Odajima, K., Ogawa, T., Ohgo, T., Rice, B.W., Rognlien, T.D., Stallard, B.W., Scharlemann, E.T., Thomassen, K.I., Wood, R.D., 1994, Nonlinear absorption of high power free-electron-laser-generated microwaves at electron cyclotron resonance heating frequencies in the MTX tokamak. Phys. Rev. Lett., 72, 1348-1351.

    Article  Google Scholar 

  1485. Allen, S.L., Casper, T.A., Fenstermacher, M.E., Foote, J.H., Hooper, E.B., Hoshino, K., Lasnier, C.J., Lopez, P., Makowski, M.A., Marinak, M.M., Meyer, W.H., Moller, J.M., Oasa, K., Oda, T., Odajima, K., Ogawa, T., Ogo, T., Rice, B.W., Rognlien, T., Stallard, B.W., Thomassen, K.I., Wood, R.D., 1992, Electron cyclotron resonance heating in the microwave tokamak experiment. Proc. 14th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Würzburg, Vol. 1, 617-625, (IAEA-CN-56/E-1-4).

  1486. Hartemann, F., Legorburu, P.P., Chu, T.S., Danly, B.G., Temkin, R.J., Faillon, G., Mourier, G., Trémeau, T., Bres, M., 1992, Long pulse high gain 35 GHz free-electron maser amplifier experiments. Nucl. Instr. Meth., A318, 87-93.

    Article  Google Scholar 

  1487. Chu, T.S., Hartemann, F., Legorburu, P.P., Danly, B.G., Temkin, R.J., Faillon, G., Mourier, G., Trémeau, T., Bres, M., 1992, High-power millimeter-wave Bragg free-electron maser oscillator experiments. Nucl. Instr. Meth., A318, 94-100.

    Article  Google Scholar 

  1488. Conde, M.E., Bekefi, G., 1992, Amplification and superradiant emission from a 33.3 GHz free electron laser with a reversed axial guide magnetic field. IEEE Trans. Plasma Science, 20, 240-244 and Nucl. Instr. Meth., A318, 109-113.

    Article  Google Scholar 

  1489. Volfbeyn, P., Ricci, K., Chen, B., Bekefi, G., 1994, Measurement of the temporal and spatial phase variations of a pulsed free electron laser amplifier. IEEE Trans. Plasma Science, 22, 659-665.

    Article  Google Scholar 

  1490. Pasour, J.A., Gold, S.H., 1985, Free electron laser experiments with and without a guide magnetic field: a review of millimeter-wave free electron laser research at the NRL. IEEE J. Quantum Electronics, 21, 845-858.

    Article  Google Scholar 

  1491. Pershing, D.E., Seeley, R.D., Jackson, R.H., Freund, H.P., 1995, Amplifier performance of the NRL ubitron. Nucl. Instr. Meth., A358, 104-107.

  1492. Karbushev, N.I., Mirnov, P.V., Sazhin, V.D., Shatkus, A.D., 1992, Generation of microwave radiation by an intense microsecond electron beam in an axisymmetric wiggler. Nucl. Instr. Meth., A318, 117-119.

    Article  Google Scholar 

  1493. Liu, S., 1992, Recent development of FEL research activities in P.R. China. Conf. Digest 17th Int. Conf. on Infrared and Millimeter Waves, Pasadena, Proc., SPIE 1929, 441 and private communication.

  1494. Chen, J., Wang, M.C., Wang, Z., Lu, Z., Zhang, L., Feng, B., 1991, Study of a Raman free-electron laser oscillator with Bragg reflection resonators. IEEE J. Quantum Electronics, 27, 477-495.

    Google Scholar 

  1495. Feng, B., Lu, Z., Zhang, L., Wang, M., 1994, Investigation of Raman free-electron lasers with a bifilar helical small-period wiggler. IEEE J. Quantum Electronics, 30, 2682-2687.

  1496. Boehmer, H., Christensen, T., Camponi, M.Z., Hauss, B., 1990, A long-pulse milli-meter-wave free electron maser experiment. IEEE Trans. Plasma Science, 18, 392-398.

    Article  Google Scholar 

  1497. Chen, J., Zheng, L., Zhang, Y., Yang, Z., 2000, A novel Smith-Purcell FEL. Int. J. of Infrared and Millimeter Waves, 21, 1563-1567.

    Article  Google Scholar 

  1498. Chen, J., Zheng, L., Zhang, Y., Yang, Z., 2001, A novel smith-purcell free electron laser. Int. J. Electronics, 88, 467-471.

    Article  Google Scholar 

  1499. Cheng, S., Granatstein, V.L., Destler, W.W., Levush, B., Rodgers, J., Antonsen, T.M., Jr., 1996, Experimental study of high-power, saturated amplification in a sheet-beam-small-period-wiggler FEL. Nucl. Instr. Meth., A357, 160-163.

    Article  Google Scholar 

  1500. Cheng, S., Destler, W.W., Granatstein, V.L., Antonsen, T.M., Jr., Levush, B., Rodgers, J., Zhang, Z.X., 1996, A high-power millimeter-wave sheet beam free-electron laser amplifier. IEEE Trans. on Plasma Sciences, 24, 750-757.

    Article  Google Scholar 

  1501. Elias, L.R., Ramian, G., Hu, J., Amir, A., 1986, Observation of single mode operation of a free electron laser. Phys. Rev. Lett., 57, 424-427.

    Article  Google Scholar 

  1502. Ramian, G., 1992, The new UCSB free-electron lasers. Nucl. Instr. Meth., A318, 225-229.

    Article  Google Scholar 

  1503. Takahaski, S., Ramian, G., Sherwin, M.S., 2009, Cavity dumping of an injection-locked free-electron laser. Applied Physics Letters, 95, 234102-1 – 234102-3.

  1504. Wiggins, S.M., Whyte, C.G., He, W., Jaroszynski, D.A., Phelps, A.D.R., Cross, A.W., Ronald, K., 1999, Pulse propagation experiments in a free-electron maser. Conf. Digest 24th Int. Conf. on Infrared and Millimeter Waves, Monterey, California, USA, TU-E7.

  1505. Whyte, C.G., Jaroszynski, D.A., Cross, A.W., He, W., Ronald, K., Young, A., Phelps, A.D.R., 2000, Free electron maser amplifier experiments. Nucl. Instr. and Meth. in Phys. Res., A 445, 272-275.

  1506. Whyte, C.G., Cross, A.W., Jaroszynski, D.A., He, W., Ronald, K., Phelps, A.D.R., 2002, Free electron maser amplifier energy recovery experiments. Proc. 3rd IEEE Int. Vacuum Electronics Conf. (IVEC 2002), Monterey, USA, 91-92 and Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, RAS, Nizhny Novgorod, Vol. 1, 2003, 275-278.

    Google Scholar 

  1507. Phelps, A.D.R., Cross, A.W., Jaroszynski, D.A., He, W., Whyte, C., Ginzburg, N.S., Peskov, N.Yu., 1997, A Ka-band Bragg free electron maser oscillator with axial guide magnetic field. Conf. Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, Virginia, USA, 17-18.

    Google Scholar 

  1508. Ginzburg, N.S., Sergeev, A.S., Zotova, I.V., Novozhilova, Yu.V., Peskov, N.Yu., Konoplev, I.V., Phelps, A.D.R., Cross, A.W., Cooke, S.J., Aitken, P., Shpak, V.G., Yalandin, M.I., Shunailov, C.A., Ulmaskulov, M.P., 1997, Experimental observation of superradiance in millimeter-wave band. Nucl. Instr. Meth., A393, 352-355.

    Article  Google Scholar 

  1509. Cross, A.W., Ginzburg, N.S., He, W., Jaroszynski, D.A., Peskov, N. Yu, Phelps, A.D.R., Whyte, C.G., 1998, A 32 GHz Bragg free electron maser (FEM) oscillator with axial guide magnetic field. Nucl. Instr. Meth., A407, 181-186.

    Article  Google Scholar 

  1510. Phelps, A.D.R., Konoplev, I.V., Cross, A.W., He, W., Whyte, C.G., Ronald, K., Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Thumm, M., 2004, Experimental study of a high power free electron maser band on a two-dimensional Bragg cavity. Proc. 10th Int. Conf. Displays and Vacuum Electron., Garmisch-Partenkirchen, ITG-Fachbericht 183, 187-191.

    Google Scholar 

  1511. Whyte, C.G., Ronald, K., Phelps, A.D.R., Konoplev, I.V., McGrane, P., Cross, A.W., He, W., Robertson, C.W., Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Thumm, M., 2004, Experimental study of a high power free electron maser based on a co-axial two-dimensional Bragg cavity. Proc. 15th Int. Conf. on High-Power Particle Beams (Beams 2004), St. Petersburg, Russia, 446-449.

  1512. Konoplev, I.V., McGrane, P., Ronald, K., Cross, A.W., He, W., Whyte, C.G., Phelps, A.D.R., Robertson, C.W., Speirs, D.C., Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Thumm, M., 2004, Free electron maser experiments based on a coaxial 2D Bragg cavity. Conf. Digest 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, Germany, 569-570.

    Google Scholar 

  1513. McGrane, P., Konoplev, I.V., Cross, A.W., He, W., Phelps, A.D.R., Ronald, K., Whyte, C.G., 2005, Operation of a free-electron maser based on two-dimensional distributed feedback. Proc. 6th IEEE Int. Vacuum Electronics Conf. (IVEC 2005), Noordwijk, The Netherlands, 439-440.

  1514. Konoplev, I.V., McGrane, P., Ronald, K., Cross, A.W., He, W., Whyte, C.G., Phelps, A.D.R., Robertson, C.W., Speirs, D.C., Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., Thumm, M., 2005, Experimental study of a FEM based on a 2D distributed feedback cavity. Conf. Digest 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, VA, USA, 499-500.

    Google Scholar 

  1515. Phelps, A.D.R., Konoplev, I.V., McGrane, P., Cross, A.W., He, W., Whyte, C.G., Ronald, K., Thumm, M.K., Ginzburg, N.S., Peskov, N.Yu., Sergeev, A.S., 2005, Co-axial Ka-band free electron maser using two-dimensioinal feedback. Proc. 7th Workshop on High Energy Density and High Power RF, AIP Conference Proc. 807, 2006, 238-245.

  1516. Konoplev, I.V., Cross, A.W., Ginzburg, N.S., He, W., McGrane, P., Peskov, N.Yu., Phelps, A.D.R., Robertson, C.W., Ronald, K., Sergeev, A.S., Thumm, M., Whyte, C.G., Zaslavsky, V.Yu., 2005, Study of co-axial free electron maser based on two-dimensional distributed feedback. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2006, Vol. 1, 208-213.

    Google Scholar 

  1517. Cross, A.W., Konoplev, I.V., He, W., McInnes, P., Phelps, A.D.R., Ronald, K., Whyte, C.G., Robertson, C.W., 2006, First operation of free-electron maser based on a combined two-mirror cavity based on 2D and 1D Bragg structures. Proc. Int. Vacuum Electronics Conf. and Int. Vacuum Electron Sources Conf. (IVEC/IVESC 2006), Monterey, CA, USA, 469-470.

  1518. Konoplev, I.V., Cross, A.W., Phelps, A.D.R., He, W., Ronald, K., Whyte, C.G., Robertson, C.W., MacInnes, P., Ginzburg, N.S., Peskov, N.Y., Sergeev, A.S., Zaslavsky, V.Y., Thumm, M., 2007, Experimental and theoretical studies of a coaxial free-electron maser based on two-dimensional distributed feedback, Phys. Review E, 76, 056406/1-12.

    Google Scholar 

  1519. Phelps, A.D.R., Konoplev, I.V., Cross, A.W., MacInnes, P., He, W., Ronald, K., Whyte, C.G., Robertson, C.W., Thumm, M., 2007, Free-electron maser based on two-dimensional distributed feedback. Conf. Digest 32nd Int. Conf. on Infrared and Millimeter Waves and 15th Int. Conf. on Terahertz Electronics, Cardiff, UK, 830-832.

    Google Scholar 

  1520. Konoplev, I.V., Cross, A.W., MacInnes, P., He, W., Phelps, A.D.R., Whyte, C.G., Ronald, K., Robertson, C.W., 2008, Free-electron maser based on a cavity with two- and one-dimensional distributed feedback. Applied Physics Letters, 92, 211501-1-3.

  1521. Cohen, M., Eichenbaum, A., Arbel, M., Ben-Haim, D., Kleinman, H., Draznin, M., Kugel, A., Yacover, I.M., Gover, A., 1995, Masing and single-mode locking in a free-electron maser employing prebunched electron beam. Phys. Rev. Lett., 74, 3812-3815 and, 1996, Nucl. Instr. Meth., A375, 17-20.

  1522. Abramovich, A., Arensburg, A., Chairman, D., Eichenbaum, A., Draznin, M., Gover, A., Kleinman, H., Merhasin, I., Pinhasi, Y., Sokolowski, J.S., Yakover, Y.M., Cohen, M., Levin, L.A., Shahal, O., Rosenberg, A., Schnitzer, I., Shiloh, J., 1997, Lasing and radiation-mode dynamics in a Van de Graaff accelerator-free-electron laser with an internal cavity. Appl. Phys. Lett., 71, 3776-3778 and, 1998, Nucl. Instr. Meth., A407, 16-20.

  1523. Abramovich, A., Canter, M., Gover, A., Sokolowski, J., Yakover, Y.M., Pinhasi, Y., Schnitzer, I., Shiloh, J., 1999, High spectral coherence in long-pulse and continuous free-electron laser: Measurements and theoretical limitations. Phys. Rev. Lett., 82, 5257-5260.

    Article  Google Scholar 

  1524. Arbel, M., Eichenbaum, A.L., Pinhasi, Y., Lurie, Y., Tecimer, M., Abramovich, A., Kleinman, H., Yakover, I.M., Gover, A., 2000, Super-radiance in a prebunched beam free electron maser. Nucl. Instr. and Meth. in Phys. Res., A 445, 247-252.

  1525. Abramovich, A., Kleinman, H., Eichenbaum, A., Yakover, Y.M., Gover, A., Pinhasi, Y., 2000, Efficiency enhancement of free electron maser oscillator by mode selection with a prebunched electron beam. Appl. Phys. Lett., 76, 16-18.

    Article  Google Scholar 

  1526. Marks, H.S., Lurie, Yu., Dyunin, E., Gover, A., 2017, Enhancing electron beam radiative energy extraction efficiency in free-electron laser oscillators through beam energy ramping. IEEE Trans. on Microwave Theory and Techniques, 65, No. 11, 4218-4224.

    Google Scholar 

  1527. Van der Slot, P.J.M., Wittemann, W.J., 1993, Energy and frequency measurements on the Twente Raman free-electron laser. Nucl. Instr. Meth., A331, 140-143.

    Article  Google Scholar 

  1528. Thumm, M.K.A., Denisov, G.G., Sakamoto, K., Tran, M.Q., 2019, High-power gyrotrons for electron cyclotron heating and current drive. Nuclear Fusion, 59, 073001 (37 pp).

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank M. Einat (Ariel University), A. Arzhannikov, P.V. Kalinin, G.N. Kulipanov, S.A. Kuznetsov, S.L. Sinitsky and N.A. Vinokurov (Budker INP, Novosibirsk), J.J. Feng (BVERI, Beijing), L. Ives and M.E. Read (Calabazas Creek Research), R. Magne (CEA, Cadarache), M. Blank, M.J. Cattelino, S.R. Cauffman, K. Felch, H. Jory and R. Schumacher (CPI, Palo Alto), W.A. Bongers (DIFFER, Nieuwegein), J.R. Brandon, T. Schaich, C.W.O. Thompson and C. Wort (Element 6, Charters), F. Albajar, T. Bonicelli and P. Sánchez (F4E), J.L. Doane, R. Freeman, J. Lohr, C.P. Moeller and R.A. Olstad (General Atomics, San Diego), M.V. Agapova, V.I. Kurbatov, V.E. Myasnikov, V.B. Orlov, L.G. Popov, E.A. Solujanova, E.M. Tai and S.V. Usachev (GYCOM), V.L. Bratman, Yu. Bykov, G.G. Denisov, N. Ginzburg, M.Yu. Glyavin, V.A. Goldenberg, A.N. Kuftin, A. Litvak, V.I. Malygin, V.N. Manuilov, S. Mishakin, V.V. Parshin, A. Peskov, M.I. Petelin, A.B. Pavelyev, R. Rozental, A.G. Savilov, E.V. Sokolov, V.E. Zapevalov and E.V. Zasypkin (IAP, Nizhny Novgorod), L. Luo and Q. Xue (IECAS, Beijing), W. Kasparek, C. Lechte and B. Plaum (IGVP, Stuttgart), F. Leuterer, M. Münich, J. Stober, D. Wagner and H. Zohm (IPP Garching), H. Braune, V. Erckmann and H.P. Laqua (IPP, Greifswald), C. Darbos and M. Henderson (ITER, Cadarache), K. Avramidis, E. Borie, G. Dammertz, G. Gantenbein, S. Illy, Z. Ioannidis, J. Jelonnek, J. Jin, P.C. Kalaria, W. Leonhardt, G. Link, A. Meier, D. Mellein, I. Pagonakis, B. Piosczyk, S. Ruess, T. Ruess, T. Rzesnicki, T. Scherer, M. Schmid, and C. Wu (Karlsruhe Institute of Technology), M.A. Shapiro and R.J. Temkin (MIT, Cambridge), H. Asano and T. Kikunaga (MITSUBISHI, Amagasaki), S. Kubo, M. Sato, T. Shimozuma and S. Takayama (NIFS, Toki), J.P. Calame, Y. Carmel, B. Danly, A. Fliflet, H. Freund, M. Garven, S.H. Gold and B. Levush (NRL, Washington D.C.), Y. Tsunawaki (Osaka Sangyo University), J. Neilson (SLAC), S. Alberti, T. Goodman, J.-P. Hogge and M.Q. Tran (SPC, Lausanne), G.G. Sominski and O.I. Louksha (State Polytechnical University, St. Petersburg), R. Phillips (Stanford University), A.W. Cross, A.D.R. Phelps and K. Ronald (Strathclyde University), E. Jerbi (Tel Aviv University), F. Legrand, V. Hermann and P. Thouvenin (THALES, Velizy), G.R. Neil (Thomas Jefferson Lab), K. Yokoo (Tohoku University Sendai), N.C. Luhmann, Jr. and D.B. McDermott (UC, Davis), L. Hongfu, Y. Liu and L. Shenggang (UESTC, Chengdu), K.R. Chu (National Taiwan University (NTU), Taipei), C.-Y. Tsai (National Tsing Hua University (NTHU), Hsinchu), T. Idehara, S. Mitsudo, I. Ogawa and T. Saito (University of Fukui), O. Dumbrajs (University of Latvia, Riga), T.M. Antonsen, V.L. Granatstein, W. Lawson, G.S. Nusinovich and A.N. Vlasov (University of Maryland), R.M. Gilgenbach and Y.Y. Lau (University of Michigan), T. Imai, T. Kariya and R. Minami (University of Tsukuba), J. Hirshfield (Yale University), K. Kajiwara, A. Kasugai, Y. Oda, K. Sakamoto and K. Takahashi (QST, Naka). This work could not have been done without their help, stimulating suggestions and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Thumm.

Ethics declarations

Disclaimer

This work was partially carried out within the framework of the European Union’s Horizon 2020 research and innovation program. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thumm, M. State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers. J Infrared Milli Terahz Waves 41, 1–140 (2020). https://doi.org/10.1007/s10762-019-00631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00631-y

Keywords

Navigation