Skip to main content
Log in

Broadband Quasi-Optical Dielectric Spectroscopy for Solid and Liquid Samples

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Dielectric materials play a supporting role for electronic circuits. With the development of 5G millimeter wave communication, precision measurement of dielectric property becomes increasingly important. This paper introduces a free-space quasi-optical spectroscopy for complex dielectric property measurement. This spectroscopy can work in both transmission and reflection modes to accommodate both low-loss and high-loss materials. By applying the transfer matrix theory, both solid and liquid samples can be characterized using this system. In addition, the system employs a Gaussian telescope design, giving a possibility of broadband operation. Furthermore, this system is much simpler in calibration compared to other systems. A detailed description of the quasi-optical system is presented. Four materials are measured in the E-band (60–90 GHz). De-ionized water is also measured to represent liquid substrates in electronic circuits. The measurement is in good agreement with published data within a discrepancy of 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Wu, C.-X. Wang, J. Sun, J. Huang, R. Feng, Y. Yang, and X. Ge, “60-GHz millimeter-wave channel measurements and modeling for indoor office environments,” IEEE Trans. Antenna Propag., 65, 1912-1924(2017).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Hasch, E. Topak, R. Schnabel, Zwick R, T. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory, 60, 845-860(2012).

    Article  Google Scholar 

  3. N. A. Salmon, “Outdoor passive millimeter-wave imaging: phenomenology and scene simulation,” IEEE Trans. Antenna Propag., 66, 897-908(2018).

    Article  Google Scholar 

  4. K.-F. Lee, S. R. Chebolu, W. Chen,R. Q. Lee, “On the role of substrate loss tangent in the cavity model theory of microstrip patch antennas,” IEEE Trans. Antenna Propag., 42, 110-112(1994).

    Article  Google Scholar 

  5. A. J. Jaworski and G. T. Bolton, “The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity,” Meas. Sci. Technol., 11, 743-757(2000).

    Article  Google Scholar 

  6. J. Baker, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory, 38, 1096-1103(1990).

    Article  Google Scholar 

  7. M. A. Stuchly and S. S. Stuchly, “Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies-a review,” IEEE Trans. Instrum. Meas., IM-29, 176-183(1980).

    Article  Google Scholar 

  8. D. K. Ghodgaonkar, V. V. Varadan, V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas., 39, 387-394(1990).

    Article  Google Scholar 

  9. J. Sheen, “Microwave measurements of dielectric properties using a closed cylindrical cavity dielectric resonator,” IEEE Trans. Dielect Elect. Insul., 14, 1139-1144(2007).

    Article  Google Scholar 

  10. X. Liu, J. Yu, “Characterization of the dielectric properties of water and methanol in the D-band using a quasi-optical spectroscopy,” Sci. Rep., 9, 18562(2019).

    Article  Google Scholar 

  11. J. R. Peacock, “Millimetre wave permittivity of water near 25 °C,” J. Phys. D Appl. Phys., 42, 205501(2009).

    Article  Google Scholar 

  12. A. Ha, M. H. Chae, K. Kim, “Beamwidth control of an impulse radiating antenna using a liquid metal reflector,” IEEE Antennas Wirel. Propag. Lett., 18, 571-575(2019).

    Article  Google Scholar 

  13. E. Polat, R. Reese, M. Jost, C. Schuster, M. Nickel, R. Jakoby, H. Maune, “Tunable liquid crystal filter in nonradiative dielectric waveguide technology at 60 GHz,” IEEE Microw. Wirel. Compon. Lett., 29, 44-46(2019).

    Article  Google Scholar 

  14. P. F. Goldsmith, Quasioptical systems: Gaussian beam quasioptical propogation and applications (Wiley-IEEE Press, New York, 1998).

    Book  Google Scholar 

  15. Y. Wang and Z. Shi, “Millimeter-wave mobile communication,” in W. Xiang (ed.), K. Zheng (ed.), X. (Sherman) Shen (ed.), 5G Mobile Communications. Springer International Publishing, 2016. doi: https://doi.org/10.1007/978-3-319-34208-5_5.

  16. C. K. Campbell. “Free-space permittivity measurements on dielectric materials at millimeter wavelengths,” IEEE Trans. Instrum. Meas., 27, 54-58(1978).

    Article  Google Scholar 

  17. J. A. Murphy. “Distortion of a simple Gaussian beam on reflection from off-axis ellipsoidal mirrors,”. Int. J Infrared Milli. Waves 8, 1165-1187 (1987).

    Article  Google Scholar 

  18. C. A. Balanis, Advanced Engineering Electromagnetics, Chapter 5 (Wiley, New York, 1989).

    Google Scholar 

  19. Bin Yang, Assessment of magnetic material for use in quasi-optical non-reciprocal devices operating at frequencies above 90 GHz, PhD Thesis, Department of Electronic Engineering, Queen Mary University of London, London, UK, (2008).

  20. A.-H. Boughriet, C. Legrand, A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory, 45, 52-57(1997).

    Article  Google Scholar 

  21. S. Szwarnowski, R. J. Sheppard, “Precision waveguide cells for the measurement of permittivity of lossy liquids at 70 GHz,” J. Phys. E: Sci. Instrum., 10, 1163-1167(1977).

    Article  Google Scholar 

  22. H. V. Chekalin, M. I. Shakhparonov, “The mechanism of dielectric relaxation in water,” J. Struct. Chem., 9, 789-790(1968).

    Article  Google Scholar 

  23. H. J. Liebe, G. A. Hufford, T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” J. Infrared Millim., 12, 659-675(1991).

    Article  Google Scholar 

  24. N. Gagnon, J. Shaker, P. Berini, L. Roy, A. Petosa, “Material characterization using a quasi-optical measurement system,” IEEE Trans. Instrum. Meas., 52, 333-336(2003).

    Article  Google Scholar 

  25. D. Bourreau, A. Péden, S. Le Maguer, “A quasi-optical free-space measurement setup without time-domain gating for material characterization in the W-band,” IEEE Trans. Instrum. Meas., 55, 2022-2028,(2006).

    Article  Google Scholar 

  26. S. Chen, K. A. Korolev, J. Kupershmidt, K. Nguyen, M. N. Afsar, “High-resolution high-power quasi-optical free-space spectrometer for dielectric and magnetic measurements in millimeter waves,” IEEE Trans. Instrum. Meas., 58, 2671-2678(2009).

    Article  Google Scholar 

  27. T. Tosaka, K. Fujii, K. Fukunaga, A. Kasamatsu, “Development of complex relative permittivity measurement system based on free-space in 220–330 GHz range,” IEEE Trans. Terahertz Sci. Technol., 5, 102-109(2015).

    Google Scholar 

  28. A. Kazemipour, M. Hudlička, S.-K. Yee, M. Hudlička, M. Salhi, T. Kleine-Ostmann, T. Schrader, “Design and calibration of a compact quasi-optical system for material characterization in millimeter/sub-millimeter wave domain,” IEEE Trans. Instrum. Meas., 64, 1438-1445(2015).

    Article  Google Scholar 

  29. J. Hammler, A. J. Gallant, C. Balocco, “Free-space permittivity measurement at terahertz frequencies with a vector network analyzer,” IEEE Trans. Terahertz Sci. Technol., 6, 817-823(2016).

    Article  Google Scholar 

  30. A. M. Hassan, J. Obrzut, E. J. Garboczi, “A Q-band free-space characterization of carbon nanotube composites,” IEEE Trans. Microw. Theory, 64, 3807-3819(2016).

    Article  Google Scholar 

  31. L. Oberto, M. Bisi, A. Kazemipour, A. Steiger, T. Kleine-Ostmann, T. Schrader, “Measurement comparison among time-domain, FTIR and VNA-based spectrometers in the THz frequency range,” Metrologia, 54, 77-84(2017).

    Article  Google Scholar 

  32. T. Horák, G. Ducournau, M. Micica, K. Postava, J. B. Youssef, J.-F. Lampin, M. Vanwolleghem, “Free-space characterization of magneto-optical hexaferrites in the submillimeter-wave range,” IEEE Trans. Terahertz Sci. Technol., 7, 563-571(2017).

    Article  Google Scholar 

  33. E. Hajisaeid, A. F. Dericioglu, and A. Akyurtlu, “All 3-D printed free-space setup for microwave dielectric characterization of materials,” IEEE Trans. Instrum. Meas., 67,1877-1886(2018).

    Article  Google Scholar 

  34. J. A. Murphy, S. Withington, “Perturbation analysis of Gaussian-beam-mode at off-axis ellipsoidal mirrors,” Infrared Phys. Technol., 37, 205-219(1996).

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under the contract number of 61871003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yu, S., Gan, L. et al. Broadband Quasi-Optical Dielectric Spectroscopy for Solid and Liquid Samples. J Infrared Milli Terahz Waves 41, 810–824 (2020). https://doi.org/10.1007/s10762-020-00710-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00710-5

Keywords

Navigation