Skip to main content
Log in

A Novel Technique for Experimental Thermophysical Characterization of Phase-Change Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The major objective of this project is to use phase-change materials (PCMs) as integrated components in passive solar heat recovery systems. The suggested approach involves experimental investigations and characterization of the global behavior of a parallelepiped “material wrap” filled with the PCM. The experimental apparatus permits simultaneous measurements of heat fluxes and temperatures. It also allows imposing and measuring temperatures variations with respect to selected time scales between the two predominant faces of the sample. The instantaneous heat flux measurements allow the determination of the “apparent” or overall heat storage capacities and thermal conductivities of the PCM—in the solid and liquid states—and that of the latent heat of melting. Results were found to be very satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T :

Temperature, °C

ΔT :

Temperature difference, °C

φ :

Density of heat flux, W · m−2

Q :

Total stored energy, J

C :

Specific heat, J · kg−1 · K−1

L :

Latent heat of melting, J · kg−1

e :

Thickness, m

k :

Thermal conductivity, W · m−1 · K−1

m :

Mass, kg

t :

Time, h

l:

Liquid state

s:

Solid state

melting:

Melting point

initial:

Initial

final:

Final

int:

Internal face of the envelope

ext:

External face of the envelope

samp:

Sample (brick) which includes the PCM and its envelope

1:

Measurement on the first side of the brick

2:

Measurement on the second side of the brick

pcm:

Phase change material

end:

At the end, in steady state

References

  1. Abhat A.: Sol. Energy 30, 313 (1983)

    Article  ADS  Google Scholar 

  2. Tyagi V.V., Budhi D.: Renew. Sust. Energy Rev. 11, 1146 (2007)

    Article  Google Scholar 

  3. Khudhair A.M., Farid M.M.: Energy Convers. Manage. 45, 263 (2004)

    Article  Google Scholar 

  4. Zhu N., Ma Z., Wang S.: Energy Convers. Manage. 50, 3169 (2009)

    Article  Google Scholar 

  5. Zalba B., Marín J.M., Cabeza L.F.: Appl. Therm. Eng. 23, 251 (2003)

    Article  Google Scholar 

  6. Farid M.M., Khudhair A.M., Razack S.A.K., Al-Hallaj S.: Energy Convers. Manage. 45, 1597 (2004)

    Article  Google Scholar 

  7. Sharma A., Tyagi V.V., Chen C.R., Buddhi D.: Renew. Sust. Energy Rev. 13, 318 (2009)

    Article  Google Scholar 

  8. Zhang Y., Zhou G., Lin K., Zhang Q., Di H.: Build. Environ. 42, 2197 (2007)

    Article  Google Scholar 

  9. Regin A.F., Solanki S.C., Saini J.S.: Renew. Sust. Energy Rev. 12, 2438 (2008)

    Article  Google Scholar 

  10. Mondal S.: Appl. Therm. Eng. 28, 1536 (2008)

    Article  Google Scholar 

  11. Sethi V.P., Sharma S.K.: Sol. Energy 82, 832 (2008)

    Article  Google Scholar 

  12. Verma P., Varun S., Singal S.K.: Renew. Sust. Energy Rev. 12, 999 (2008)

    Article  Google Scholar 

  13. Zalewski L., Lassue S., Duthoit B., Butez M.: Build. Environ. 37, 109 (2002)

    Article  Google Scholar 

  14. Zalewski L., Chantant M., Lassue S., Duthoit B.: Energy Build. 55, 8 (1997)

    Google Scholar 

  15. Available from http://www.cristopia.com/english/products/indproducts.html, consulted 2010-03-15 to obtain manufacturer’s parameters

  16. Banu D., Feldman D., Hawes D.: Thermochim. Acta 317, 39 (1998)

    Article  Google Scholar 

  17. Rady M.: Energy Convers. Manage. 50, 1210 (2009)

    Article  Google Scholar 

  18. Bentz D.P., Turpin R.: Cem. Concr. Compos. 29, 527 (2009)

    Article  Google Scholar 

  19. Yinping Z., Yi J.: Meas. Sci. Technol. 10, 201 (1999)

    Article  ADS  Google Scholar 

  20. F. Cordeiro Cavalcanti, Caractérisation thermique de produits de l’état liquide à l’état solide, Thèse de Doctorat., Institut National des Sciences Appliquées de Lyon (2006)

  21. Brown M.E.: Handbook of Thermal Analysis and Calorimetry, vol. 2. 2nd edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  22. Vidalain G., Gosselin L., Lacroix M.: Int. J. Heat Mass Transf. 52, 1753 (2009)

    Article  MATH  Google Scholar 

  23. He B., Martin V., Setterwall F.: Energy 29, 1785 (2004)

    Article  Google Scholar 

  24. Ehmimed J.F., Zeraouli Y., Dumas J.P., Mimet A.: Int. J. Therm. Sci. 42, 33 (2003)

    Article  Google Scholar 

  25. Stritih U.: Int. J. Heat Mass Transf. 47, 2841 (2004)

    Article  Google Scholar 

  26. Leclercq D., Thery P.: Rev. Sci. Instrum. 54, 374 (1983)

    Article  ADS  Google Scholar 

  27. S. Lassue, S. Guths, D. Leclercq, B. Duthoit, in Proceedings of 3rd Conf. on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics (Hawaii, 1993), pp. 831–838

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Lassue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Younsi, Z., Zalewski, L., Lassue, S. et al. A Novel Technique for Experimental Thermophysical Characterization of Phase-Change Materials. Int J Thermophys 32, 674–692 (2011). https://doi.org/10.1007/s10765-010-0900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0900-z

Keywords

Navigation