Skip to main content
Log in

Temperature Enhancement Through Interaction of Thermal Waves for Phonon Transport in Silicon Thin Films

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Recently, Siemens et al. found that the Fourier law may overestimate the energy transported away from one hot spot in the thin film. In this work, the lattice Boltzmann method is employed to investigate phonon transport in silicon thin films. It is found that in the transitional or ballistic regime when the thermal waves initiated from temperature disturbances on two surfaces of the thin film meet in the inner region, the temperature rises significantly, which is different from the case when the heat conduction is induced by the temperature disturbance on one surface of the thin film. Therefore, the interaction of thermal waves induced by the thermal transport from two nanoscale hot spots separated by a nanoscale distance inside the thin film may temporarily cause a higher temperature in some regions between the two hot spots than that predicted by the Fourier law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, H.C. Kapteyn, Nat. Mater. 9, 26 (2010)

    Article  ADS  Google Scholar 

  2. N. Yang, G. Zhang, B. Li, Nano Today 5, 85 (2010)

    Article  Google Scholar 

  3. S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987)

    Article  ADS  Google Scholar 

  4. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  5. G. Chen, Phys. Rev. Lett. 86, 2297 (2001)

    Article  ADS  Google Scholar 

  6. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Phys. Rev. Lett. 95, 065502 (2005)

    Article  ADS  Google Scholar 

  7. A.A. Joshi, A. Majumdar, J. Appl. Phys. 74, 31 (1993)

    Article  ADS  Google Scholar 

  8. D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior (Taylor & Francis, Washington, 1996)

    Google Scholar 

  9. Y.S. Ju, K.E. Goodson, Appl. Phys. Lett. 74, 3005 (1999)

    Article  ADS  Google Scholar 

  10. W. Liu, M. Asheghi, Appl. Phys. Lett. 84, 3819 (2004)

    Article  ADS  Google Scholar 

  11. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  12. B. Shen, P. Zhang, Int. J. Heat Mass Transf. 51, 1713 (2008)

    Article  MATH  Google Scholar 

  13. P.G. Sverdrup, Y.S. Ju, K.E. Goodson, ASME J. Heat Transf. 123, 130 (2001)

    Article  Google Scholar 

  14. S. Narumanchi, J.Y. Murthy, C.H. Amon, ASME J. Heat Transf. 125, 896 (2003)

    Article  Google Scholar 

  15. M. Xu, L. Wang, Int. J. Heat Mass Transf. 48, 5616 (2005)

    Article  MATH  Google Scholar 

  16. L. Cheng, M. Xu, L. Wang, Int. J. Heat Mass Transf. 51, 6018 (2008)

    Article  MATH  Google Scholar 

  17. M. Xu, H. Hu, Proc. R. Soc. A 467, 1851 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. S.V.J. Narumanchi, J.Y. Murthy, C.H. Amon, ASME J. Heat Transf. 126, 946 (2004)

    Google Scholar 

  19. S.V.J. Narumanchi, J.Y. Murthy, C.H. Amon, ASME J. Heat Transf. 127, 713 (2005)

    Article  Google Scholar 

  20. B.T. Wong, M. Francoeur, M.P. Mengüç, Int. J. Heat Mass Transf. 54, 1825 (2011)

    Article  MATH  Google Scholar 

  21. S. Nazumder, A. Majumdar, ASME J. Heat Transf. 123, 749 (2001)

    Article  Google Scholar 

  22. V. Sverdlov, E. Vngersboeck, H. Kosina, S. Selberherr, Mater. Sci. Eng. R 58, 228 (2008)

    Article  Google Scholar 

  23. M.S. Jeng, R. Yang, D. Song, G. Chen, ASME J. Heat Transf. 130, 042410 (2008)

    Article  Google Scholar 

  24. Q. Hao, G. Chen, M.S. Jeng, J. Appl. Phys. 106, 114321 (2009)

    Article  ADS  Google Scholar 

  25. G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988)

    Article  ADS  Google Scholar 

  26. S. Succi, R. Benzi, F. Higuera, Physica D 47, 219 (1991)

    Article  ADS  Google Scholar 

  27. R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222, 145 (1992)

    Article  ADS  Google Scholar 

  28. Y.H. Qian, D. d’Humieres, P. Lallemand, Europhys. Lett. 17, 479 (1992)

    Article  ADS  MATH  Google Scholar 

  29. S. Succi, The Lattice Boltzmann Equation for Fluid Mechanics and Beyond (Oxford University Press, New York, 2001)

    Google Scholar 

  30. D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, Philos. Trans. R. Soc. Lond. Ser. A 360, 437 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. R. Guyer, Phys. Rev. E 50, 4596 (1994)

    Article  ADS  Google Scholar 

  32. W. Jiaung, J. Ho, J. Appl. Phys. 95, 958 (2004)

    Article  ADS  Google Scholar 

  33. W. Jiaung, J. Ho, Phys. Rev. E 77, 066710 (2008)

    Article  ADS  Google Scholar 

  34. S.S. Ghai, W.T. Kim, R.A. Escobar, C.H. Amon, M.S. Jhon, J. Appl. Phys. 97, 10P703 (2005)

  35. R.A. Escobar, S.S. Ghai, M.S. Jhon, C.H. Amon, Int. J. Heat Mass Transf. 49, 97 (2006)

    Article  MATH  Google Scholar 

  36. R.A. Escobar, C.H. Amon, ASME J. Heat Transf. 129, 790 (2007)

    Article  Google Scholar 

  37. R.A. Escobar, C.H. Amon, ASME J. Heat Transf. 130, 092402 (2008)

    Article  Google Scholar 

  38. P. Heino, Int. J. Multiscale Comput. Eng. 6, 169 (2008)

    Article  Google Scholar 

  39. P. Heino, Int. J. Multiscale Comput. Eng. 6, 349 (2008)

    Article  Google Scholar 

  40. P. Heino, Comput. Math. Appl. 59, 2351 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Christensen, S. Graham, Numer. Heat Transf. 57, 89 (2010)

    Article  ADS  Google Scholar 

  42. S. Pisipati, J. Geer, B. Sammakia, B.T. Murray, Int. J. Heat Mass Transf. 54, 3406 (2011)

    Article  MATH  Google Scholar 

  43. A. Nabovati, D.P. Sellan, D.P. Amon, J. Comput. Phys. 230, 5864 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. G. Chen, ASME J. Heat Transf. 118, 539 (1996)

    Article  Google Scholar 

  45. G. Chen, D. Borca-Tasciuc, R.G. Yang, Encycl. Nanosci. Nanotechnol. 7, 429 (2004)

    Google Scholar 

  46. G.D. Mahan, F. Claro, Phys. Rev. B 38, 1963 (1988)

    Article  ADS  Google Scholar 

  47. V.P. Carey, Statistical Thermodynamics and Microscale Thermophysics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  48. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Article  ADS  MATH  Google Scholar 

  49. X. He, L.S. Luo, Phys. Rev. E 55, R6333 (1997)

    Article  ADS  Google Scholar 

  50. X. He, L.S. Luo, Phys. Rev. E 56, 6811 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The financial support of our research by the National Natural Science Foundation of China (Project No. 50876054) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingtian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Cheng, Q. Temperature Enhancement Through Interaction of Thermal Waves for Phonon Transport in Silicon Thin Films. Int J Thermophys 34, 306–321 (2013). https://doi.org/10.1007/s10765-013-1412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1412-4

Keywords

Navigation