Skip to main content
Log in

Nanoparticle-Stabilized Lattices of Topological Defects in Liquid Crystals

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We present a review of nanoparticle (NP) stabilized lattices of topological defects (TDs) in liquid crystals (LCs). We focus on conditions for which chiral liquid-crystalline blue phases and twist-grain boundary A phases might be stable in bulk LCs. These phases exhibit lattices of disclinations and dislocations corresponding to line TDs in orientational and translational LC order, respectively. NPs of appropriate size and surface coating can assemble in the cores of defects and stabilize metastable or increase the temperature range of already stable lattices of TDs. The stabilization is achieved by the universal defect core replacement and adaptive defect core targeting mechanisms. Representative experiments revealing these phenomena and potential applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

NP:

Nanoparticle

TD:

Topological defect

LC:

Liquid crystal

BP:

Blue phase

BPI, BPII, BPII:

Blue phase I, blue phase II, blue phase III

TGB:

Twist-grain boundary

N:

Nematic

SmA :

Smectic-A

SmC :

Smectic-C

Cr:

Crystal

N * :

Chiral nematic

I :

Isotropic phase

\(N_{L}^{*}\) :

Chiral line liquid

LGG:

Landau–de Gennes–Ginzburg

DCR:

Defect core replacement

ADCT:

Adaptive defect core targeting

Au NPs:

Gold nanoparticles

CdSe:

Cadmium selenide

CdSSe:

Cadmium sulfide selenide

CE8:

S-(+)-[4-(2′-methylbutyl) phenyl 4′-n-octylbiphenyl-4-carboxylate]

References

  1. I.W. Hamley, Nanotechnology with soft materials. Angew. Chem. Int. Ed. 42, 1692 (2003)

    Article  Google Scholar 

  2. T. Hegmann, H. Qi, V.M. Marx, Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J. Inorg. Organomet. Polym. 17, 483 (2007)

    Article  Google Scholar 

  3. H.K. Bisoyi, S. Kumar, Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem. Soc. Rev. 40, 306 (2011)

    Article  Google Scholar 

  4. A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107 (2006)

    Article  ADS  Google Scholar 

  5. M. Kleman, Soft Matter Physics: An Introduction (Springer Science & Business Media, New York, 2004)

    Book  Google Scholar 

  6. Y.A. Garbovskiy, A.V. Glushchenko, in Solid State Physics, ed. by R.E. Camley, R.L. Stamps (Elsevier, Amsterdam, 2010), pp. 1–74

  7. D.R. Nelson, Toward a tetravalent chemistry of colloids. Nano Lett. 2, 1125 (2002)

    Article  ADS  Google Scholar 

  8. P.P. Muhoray, Orientationally ordered soft matter: the diverse world of liquid crystals. Phys. Today 60, 54 (2007)

    Article  Google Scholar 

  9. N.D. Mermin, The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  10. O.D. Lavrentovich, Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops. Liq. Cryst. 24, 117 (1998)

    Article  Google Scholar 

  11. W.H. Zurek, Cosmological experiments in superfluid helium? Nature 317, 505 (1985)

    Article  ADS  Google Scholar 

  12. A. Hobson, There are no particles, there are only fields. Am. J. Phys. 81, 211 (2013)

    Article  ADS  Google Scholar 

  13. T.H.R. Skyrme, A unified field theory of mesons and baryons. Nucl. Phys. 31, 556 (1962)

    Article  MathSciNet  Google Scholar 

  14. S. Meiboom, J.P. Sethna, P.W. Anderson, W.F. Brinkman, Theory of the blue phase of cholesteric liquid crystals. Phys. Rev. Lett. 46, 1216 (1981)

    Article  ADS  Google Scholar 

  15. D.C. Wright, N.D. Mermin, Crystalline liquids: the blue phases. Rev. Mod. Phys. 61, 385 (1989)

    Article  ADS  Google Scholar 

  16. S.R. Renn, T.C. Lubensky, Abrikosov dislocation lattice in a model of the cholesteric-to-smectic-A transition. Phys. Rev. A 38, 2132 (1988)

    Article  ADS  Google Scholar 

  17. J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J.S. Patel, A new molecular ordering in helical liquid crystals. J. Am. Chem. Soc. 111, 8119 (1989)

    Article  Google Scholar 

  18. D. Andrienko, Introduction to liquid crystals. J. Mol. Liq. 267, 520 (2018)

    Article  Google Scholar 

  19. P. de Gennes, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995)

    Book  Google Scholar 

  20. P.S. Pershan, Lyotropic liquid crystals. Phys. Today 35, 34 (1982)

    Article  ADS  Google Scholar 

  21. E.T. Samulski, Polymeric liquid crystals. Phys. Today 35, 40 (1982)

    Article  ADS  Google Scholar 

  22. P. de Gennes, An analogy between superconductors and smectics A. Solid State Commun. 10, 753 (1972)

    Article  ADS  Google Scholar 

  23. M. Kleman, Defects in liquid crystals. Rep. Prog. Phys. 52, 555 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  24. M.V. Kurik, O.D. Lavrentovich, Defects in liquid crystals: homotopy theory and experimental studies. Sov. Phys. Usp. 31, 196 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Afghah, R.L.B. Selinger, J.V. Selinger, Visualising the crossover between 3D and 2D topological defects in nematic liquid crystals. Liq. Cryst. 45, 2022 (2018)

    Article  Google Scholar 

  26. N. Schopohl, T.J. Sluckin, Defect core structure in nematic liquid crystals. Phys. Rev. Lett. 59, 2582 (1987)

    Article  ADS  Google Scholar 

  27. S. Kralj, E.G. Virga, S. Žumer, Biaxial torus around nematic point defects. Phys. Rev. E 60, 1858 (1999)

    Article  ADS  Google Scholar 

  28. H. Aharoni, T. Machon, R.D. Kamien, Composite dislocations in smectic liquid crystals. Phys. Rev. Lett. 118, 257801 (2017)

    Article  ADS  Google Scholar 

  29. S. Kralj, T.J. Sluckin, Landau-de Gennes theory of the core structure of a screw dislocation in smectic A liquid crystals. Liq. Cryst. 18, 887 (1995)

    Article  Google Scholar 

  30. M. Ambrožič, S. Kralj, T.J. Sluckin, S. Žumer, D. Svenšek, Annihilation of edge dislocations in smectic-A liquid crystals. Phys. Rev. E 70, 051704 (2004)

    Article  ADS  Google Scholar 

  31. F. Reinitzer, Beiträge zur kenntniss des cholesterins. Monatsh. Chem. 9, 421 (1888)

    Article  Google Scholar 

  32. H.J. Coles, M.N. Pivnenko, Liquid crystal ‘blue phases’ with a wide temperature range. Nature 436, 997 (2005)

    Article  ADS  Google Scholar 

  33. S.P. James, Theory of the blue phases of chiral nematic liquid crystals. in Theory of the Blue Phases of Chiral Nematic Liquid Crystals (Springer, Berlin, 1987), pp. 305–324

  34. I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, T. Michael, Stabilising liquid crystalline blue phases. Soft Matter 8, 4355 (2012)

    Article  ADS  Google Scholar 

  35. E.P. Koistinen, P.H. Keyes, Light-scattering study of the structure of blue phase III. Phys. Rev. Lett. 74, 4460 (1995)

    Article  ADS  Google Scholar 

  36. E. Dubois-violette, B. Pansu, P. Pieranski, Infinite periodic minimal surfaces: a model for blue phases. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 192, 221 (1990)

    Article  Google Scholar 

  37. J. Yan, L. Rao, M. Jiao, Y. Li, H.C. Cheng, S.T. Wu, Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications. J. Mater. Chem. 21, 7870 (2011)

    Article  Google Scholar 

  38. S. Meiboom, M. Sammon, Structure of the blue phase of a cholesteric liquid crystal. Phys. Rev. Lett. 44, 882 (1980)

    Article  ADS  Google Scholar 

  39. O. Henrich, K. Stratford, M.E. Cates, D. Marenduzzo, Structure of blue phase III of cholesteric liquid crystals. Phys. Rev. Lett. 106, 107801 (2011)

    Article  ADS  Google Scholar 

  40. E. Kemiklioglu, J.Y. Hwang, L.C. Chien, Stabilization of cholesteric blue phases using polymerized nanoparticles. Phys. Rev. E 89, 042502 (2014)

    Article  ADS  Google Scholar 

  41. W. Cao, A. Muñoz, P.P. Muhoray, B. Taheri, Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat. Mater. 1, 111 (2002)

    Article  ADS  Google Scholar 

  42. J.P. Lagerwall, G. Scalia, A new era for liquid crystal research: applications of liquid crystals in soft matter nano-bio and microtechnology. Curr. Appl. Phys. 12, 1387 (2012)

    Article  ADS  Google Scholar 

  43. Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv. Mater. 17, 96 (2005)

    Article  Google Scholar 

  44. H. Iwamochi, A. Yoshizawa, Electro-optical switching in blue phases induced using a binary system of a T-shaped nematic liquid crystal and a chiral compound. Appl. Phys. Express 1, 111801 (2008)

    Article  ADS  Google Scholar 

  45. H.Y. Liu, C.T. Wang, C.Y. Hsu, T.H. Lin, J.H. Liu, Optically tuneable blue phase photonic band gaps. Appl. Phys. Lett. 96, 121103 (2010)

    Article  ADS  Google Scholar 

  46. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Polymer-stabilized liquid crystal blue phases. Nat. Mater. 1, 64 (2002)

    Article  ADS  Google Scholar 

  47. G.P. Alexander, J.M. Yeomans, Stabilizing the blue phases. Phys. Rev. E 74, 061706 (2006)

    Article  ADS  Google Scholar 

  48. A. Yoshizawa, H. Iwamochi, S. Segawa, M. Sato, The role of a liquid crystal oligomer in stabilizing blue phases. Liq. Cryst. 34, 1039 (2007)

    Article  Google Scholar 

  49. H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, M. Ozaki, Nanoparticle-stabilized cholesteric blue phases. Appl. Phys. Express 2, 121501 (2009)

    Article  ADS  Google Scholar 

  50. S. Taushanoff, K. Van Le, J. Williams, R.J. Twieg, B.K. Sadashiva, H. Takezoe, A. Jákli, Stable amorphous blue phase of bent-core nematic liquid crystals doped with a chiral material. J. Mater. Chem. 20, 5893 (2010)

    Article  Google Scholar 

  51. K.M. Chen, S. Gauza, H. Xianyu, S.T. Wu, Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. J. Disp. Technol. 6, 49 (2010)

    Article  ADS  Google Scholar 

  52. E. Karatairi, B. Rožič, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, S. Kralj, Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys. Rev. E 81, 041703 (2010)

    Article  ADS  Google Scholar 

  53. G. Cordoyiannis, P. Losada-Pérez, C.S.P. Tripathi, B. Rožič, U. Tkalec, V. Tzitzios, E. Karatairi, G. Nounesis, Z. Kutnjak, I. Muševič, Blue phase III widening in CE6-dispersed surface-functionalised CdSe nanoparticles. Liq. Cryst. 37, 1419 (2010)

    Article  Google Scholar 

  54. B. Rožič, V. Tzitzios, E. Karatairi, U. Tkalec, G. Nounesis, Z. Kutnjak, G. Cordoyiannis, R. Rosso, E.G. Virga, I. Muševič, Theoretical and experimental study of the nanoparticle-driven blue phase stabilization. Eur. Phys. J. E 34, 17 (2011)

    Article  Google Scholar 

  55. H. Choi, H. Higuchi, Y. Ogawa, H. Kikuchi, Polymer-stabilized supercooled blue phase. Appl. Phys. Lett. 101, 131904 (2012)

    Article  ADS  Google Scholar 

  56. L. Wang, W. He, X. Xiao, F. Meng, Y. Zhang, P. Yang, L. Wang, J. Xiao, H. Yang, Y. Lu, Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. Small 8, 2189 (2012)

    Article  Google Scholar 

  57. M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, Z. Kutnjak, The effect of graphene on liquid-crystalline blue phases. Appl. Phys. Lett. 103, 143116 (2013)

    Article  ADS  Google Scholar 

  58. M. Lavrič, G. Cordoyiannis, S. Kralj, V. Tzitzios, G. Nounesis, Z. Kutnjak, Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. Appl. Opt. 52, 47 (2013)

    Article  ADS  Google Scholar 

  59. I. Gvozdovskyy, ‘Blue phases’ of highly chiral thermotropic liquid crystals with a wide range of near-room temperature. Liq. Cryst. 42, 1391 (2015)

    Article  Google Scholar 

  60. M.A. Gharbi, S. Manet, J. Lhermitte, S. Brown, J. Milette, V. Toader, M. Sutton, L. Reven, Reversible nanoparticle cubic lattices in blue phase liquid crystals. ACS Nano 10, 3410 (2016)

    Article  Google Scholar 

  61. W. Zhang, X. Wang, D. Wang, Z. Yang, H. Gao, Y. Xing, W. He, H. Cao, H. Yang, Blue phase liquid crystals affected by graphene oxide modified with aminoazobenzol group. Liq. Cryst. 43, 573 (2016)

    Article  Google Scholar 

  62. S.Y. Jo, S.W. Jeon, B.C. Kim, J.H. Bae, F. Araoka, S.W. Choi, Polymer stabilization of liquid-crystal blue phase II toward photonic crystals. ACS Appl. Mater. Interfaces 9, 8941 (2017)

    Article  Google Scholar 

  63. F. Liu, G. Ma, D. Zhao, Nickel nanoparticle-stabilized room-temperature blue-phase liquid crystals. Nanotechnology 29, 285703 (2018)

    Article  ADS  Google Scholar 

  64. Y. Zhao, X. Qiao, K. Li, S. Ding, S. Tian, H. Ren, M. Zhu, Q. Ma, Y. Zhao, Q. Ban, Blue phase liquid crystals stabilized by graphene oxide modified with aminoalkyl group. Mol. Cryst. Liq. Cryst. 664, 1 (2018)

    Article  Google Scholar 

  65. S.R. Renn, T.C. Lubensky, Existence of a Sm-C grain boundary phase at the chiral MAC point. Mol. Cryst. Liq. Cryst. 209, 349 (1991)

    Article  Google Scholar 

  66. S.R. Renn, Multicritical behavior of Abrikosov vortex lattices near the cholesteric–smectic-A–smectic-C* point. Phys. Rev. A 45, 953 (1992)

    Article  ADS  Google Scholar 

  67. L. Navailles, H.T. Nguyen, P. Barois, C. Destrade, N. Isaert, Smectic A twist grain boundary phase in three new series with chiral (L) lactic acid derivatives. Liq. Cryst. 15, 479 (1993)

    Article  Google Scholar 

  68. L. Navailles, B. Pansu, L. Gorre-Talini, H.T. Nguyen, Structural study of a commensurate TGB A phase and of a presumed chiral line liquid phase. Phys. Rev. Lett. 81, 4163 (1998)

    Article  ADS  Google Scholar 

  69. L. Navailles, P. Barois, H.T. Nguyen, X-ray measurement of the twist grain boundary angle in the liquid crystal analog of the Abrikosov phase. Phys. Rev. Lett. 71, 545 (1993)

    Article  ADS  Google Scholar 

  70. J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J.S. Patel, Characterization of a new helical smectic liquid crystal. Nature 337, 449 (1989)

    Article  ADS  Google Scholar 

  71. T.C. Lubensky, S.R. Renn, Twist-grain-boundary phases near the nematic–smectic-A–smectic-C point in liquid crystals. Phys. Rev. A 41, 4392 (1990)

    Article  ADS  Google Scholar 

  72. R.D. Kamien, T.C. Lubensky, Twisted line liquids. J. Phys. I 3, 2131 (1993)

    Google Scholar 

  73. G. Srajer, R. Pindak, M.A. Waugh, J.W. Goodby, J.S. Patel, Structural measurements on the liquid-crystal analog of the Abrikosov phase. Phys. Rev. Lett. 64, 1545 (1990)

    Article  ADS  Google Scholar 

  74. K.J. Ihn, J.A.N. Zasadzinski, R. Pindak, A.J. Slaney, J. Goodby, Observations of the liquid-crystal analog of the Abrikosov phase. Science 258, 275 (1992)

    Article  ADS  Google Scholar 

  75. O.D. Lavrentovich, Y.A. Nastishin, V.I. Kulishov, Y.S. Narkevich, A.S. Tolochko, S.V. Shiyanovskii, Helical smectic A. Europhys. Lett. 13, 313 (1990)

    Article  ADS  Google Scholar 

  76. G. Cordoyiannis, V.S. Rao Jampani, S. Kralj, S. Dhara, V. Tzitzios, G. Basina, G. Nounesis, Z. Kutnjak, C.S. Pati Tripathi, P. Losada-Pérez, Different modulated structures of topological defects stabilized by adaptive targeting nanoparticles. Soft Matter 9, 3956 (2013)

    Article  ADS  Google Scholar 

  77. C. Kyrou, S. Kralj, M. Panagopoulou, Y. Raptis, G. Nounesis, I. Lelidis, Impact of spherical nanoparticles on nematic order parameters. Phys. Rev. E 97, 042701 (2018)

    Article  ADS  Google Scholar 

  78. M. Trček, G. Cordoyiannis, V. Tzitzios, S. Kralj, G. Nounesis, I. Lelidis, Z. Kutnjak, Nanoparticle-induced twist-grain boundary phase. Phys. Rev. E 90, 032501 (2014)

    Article  ADS  Google Scholar 

  79. M. Trček, G. Cordoyiannis, B. Rožič, V. Tzitzios, G. Nounesis, S. Kralj, I. Lelidis, E. Lacaze, H. Amenitsch, Z. Kutnjak, Twist-grain boundary phase induced by Au nanoparticles in a chiral liquid crystal host. Liq. Cryst. 44, 1575 (2017)

    Article  Google Scholar 

  80. M. Lavrič, V. Tzitzios, G. Cordoyiannis, S. Kralj, G. Nounesis, I. Lelidis, Z. Kutnjak, Blue phase range widening induced by laponite nanoplatelets in the chiral liquid crystal CE8. Mol. Cryst. Liq. Cryst. 615, 14 (2015)

    Article  Google Scholar 

  81. M. Trček, G. Cordoyiannis, Z. Kutnjak, G. Nounesis, I. Lelidis, Twist-grain-boundary-A* phase stabilisation in confined geometry by the interfaces. Liq. Cryst. 43, 1437 (2016)

    Article  Google Scholar 

  82. K. Stratford, O. Henrich, J.S. Lintuvuori, M.E. Cates, D. Marenduzzo, Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials. Nat. Commun. 5, 3954 (2014)

    Article  ADS  Google Scholar 

  83. E. Bukusoglu, X. Wang, J.A. Martinez-Gonzalez, J.J. de Pablo, N.L. Abbott, Stimuli-responsive cubosomes formed from blue phase liquid crystals. Adv. Mater. 27, 6892 (2015)

    Article  Google Scholar 

  84. H. Kikuchi, S. Izena, H. Higuchi, Y. Okumura, K. Higashiguchi, A giant polymer lattice in a polymer-stabilized blue phase liquid crystal. Soft Matter 11, 4572 (2015)

    Article  ADS  Google Scholar 

  85. I.C. Khoo, C.W. Chen, T.J. Ho, Observation of photorefractive effects in blue-phase liquid crystal containing fullerene-C 60. Opt. Lett. 41, 123 (2016)

    Article  ADS  Google Scholar 

  86. J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Mixtures of blue phase liquid crystal with simple liquids: elastic emulsions and cubic fluid cylinders. Phys. Rev. Lett. 121, 037802 (2018)

    Article  ADS  Google Scholar 

  87. P. Lin, Q. Yan, Z. Wei, Y. Chen, F. Chen, Z. Huang, X. Li, H. Wang, X. Wang, Z. Cheng, All-inorganic perovskite quantum dots stabilized blue phase liquid crystals. Opt. Express 26, 18310 (2018)

    Article  ADS  Google Scholar 

  88. B.S. Murray, R.A. Pelcovits, C. Rosenblatt, Creating arbitrary arrays of two-dimensional topological defects. Phys. Rev. E 90, 052501 (2014)

    Article  ADS  Google Scholar 

  89. H. Yoshida, K. Asakura, J. Fukuda, M. Ozaki, Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks. Nat. Commun. 6, 7180 (2015)

    Article  ADS  Google Scholar 

  90. Y. Sasaki, V. Jampani, C. Tanaka, N. Sakurai, S. Sakane, K.V. Le, F. Araoka, H. Orihara, Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals. Nat. Commun. 7, 13238 (2016)

    Article  ADS  Google Scholar 

  91. M. Bowick, D.R. Nelson, A. Travesset, Curvature-induced defect unbinding in toroidal geometries. Phys. Rev. E 69, 041102 (2004)

    Article  ADS  Google Scholar 

  92. V. Vitelli, A.M. Turner, Anomalous coupling between topological defects and curvature. Phys. Rev. Lett. 93, 215301 (2004)

    Article  ADS  Google Scholar 

  93. L. Mesarec, W. Góźdź, A. Iglič, S. Kralj, Effective topological charge cancelation mechanism. Sci. Rep. 6, 27117 (2016)

    Article  ADS  Google Scholar 

  94. I.I. Smalyukh, R. Pratibha, N.V. Madhusudana, O.D. Lavrentovich, Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals. Eur. Phys. J. E 16, 179 (2005)

    Article  Google Scholar 

  95. D. Pires, J.B. Fleury, Y. Galerne, Colloid particles in the interaction field of a disclination line in a nematic phase. Phys. Rev. Lett. 98, 247801 (2007)

    Article  ADS  Google Scholar 

  96. U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, I. Musevic, Reconfigurable knots and links in chiral nematic colloids. Science 333, 62 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. B. Senyuk, Q. Liu, S. He, R.D. Kamien, R.B. Kusner, T.C. Lubensky, I.I. Smalyukh, Topological colloids. Nature 493, 200 (2013)

    Article  ADS  Google Scholar 

  98. Q. Liu, B. Senyuk, M. Tasinkevych, I.I. Smalyukh, Nematic liquid crystal boojums with handles on colloidal handlebodies. Proc. Natl. Acad. Sci. 110, 9231 (2013)

    Article  ADS  Google Scholar 

  99. M. Muševič, Škarabot, Self-assembly of nematic colloids. Soft Matter 4, 195 (2008)

    Article  ADS  Google Scholar 

  100. R. Jose, G. Skačej, V.S.S. Sastry, S. Žumer, Colloidal nanoparticles trapped by liquid-crystal defect lines: a lattice Monte Carlo simulation. Phys. Rev. E 90, 032503 (2014)

    Article  ADS  Google Scholar 

  101. M. Ravnik, G.P. Alexander, J.M. Yeomans, S. Žumer, Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc. Natl. Acad. Sci. 108, 5188 (2011)

    Article  ADS  Google Scholar 

  102. Y. Yuan, A. Martinez, B. Senyuk, M. Tasinkevych, I.I. Smalyukh, Chiral liquid crystal colloids. Nat. Mater. 17, 71 (2018)

    Article  ADS  Google Scholar 

  103. D. Lindley, Focus: landmarks——the birth of photonic crystals. Physics 6, 94 (2013)

    Article  Google Scholar 

  104. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  105. D.Y. Guo, C.W. Chen, C.C. Li, H.C. Jau, K.H. Lin, T.M. Feng, C.T. Wang, T.J. Bunning, I.C. Khoo, T.H. Lin, Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction. Nat. Mater. 19, 94 (2020)

    Article  Google Scholar 

  106. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A.G. acknowledges the support of AD FUTURA, Public Scholarship, Development, Disability, and Maintenance Fund of the Republic of Slovenia. M.L., B.R., Z.K. and S.K. acknowledge the support of the Slovenian Research Agency Grant J1-9147 and programs P1-0125 and P1-0099. M.T. acknowledges the support of the Project PR-05015 of the Slovenian Research Agency. G.C. acknowledges the support of Project CZ.02.2.69/0.0/0.0/16 027/0008465 for Mobility of Researchers under the Operational Programme Research, Development and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samo Kralj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Free Energy Densities-Enforced Behavior

Appendix: Free Energy Densities-Enforced Behavior

Here, we summarize behaviors enforced by free energy densities given by Eq. 3.

The nematic condensation term \(f_{c}^{\left( n \right)}\) enforces finite value of s if orientational order is condensated. For example, the IN phase transition in non-chiral samples (or IN* transformation in chiral LCs) takes place at the critical temperature \(T_{IN} = T_{n}^{*} + \frac{{b_{n}^{2} }}{{4a_{n} c_{n} }}\) [27]. For \(T < T_{IN}\) the equilibrium nematic order parameter \(s \equiv s_{eq}\) minimizing \(f_{c}^{\left( n \right)}\) reads \(s_{eq} = s_{0} \left( {\frac{{3 + \sqrt {9 - 8r} }}{4}} \right)\). Here \(s_{0} = \frac{{b_{n} }}{{2c_{n} }}\) and \(r = \frac{{T - T_{n}^{*} }}{{T_{IN} - T_{n}^{*} }}\). Note that in equilibrium it holds \(f_{c}^{\left( n \right)} \left( {T \le T_{IN} } \right) < 0\) and \(f_{c}^{\left( n \right)} \left( {T > T_{IN} } \right) = 0\).

Next, we consider the nematic elastic term \(f_{e}^{\left( n \right)}\). The 1st term in Eq. 3b enforces spatially homogeneous amplitude s. Nematic director field configurations are determined by the remaining splay, twist, bend, and saddle-splay term in Eq. 3b, weighted by the Frank elastic constants \(K_{1} ,\)\(K_{2} ,\)\(K_{3} ,\) and \(K_{24} ,\), respectively.

These term favor nematic (for \(q = 0\)) or cholesteric (for \(q \ne 0\)) order for a relatively weak saddle-splay contribution. An equilibrium nematic phase is determined by \(\vec{n} \equiv \vec{n}_{eq} = \vec{e}\). Here \(\vec{e}\) determines a symmetry-breaking direction, which is spatially homogeneous. In the cholesteric phase, a helical structure is formed, where \(\vec{n}\) is always perpendicular to the helix axis. For instance, for the helix axis along the z-axis, a cholesteric order could be described by \(\vec{n}_{eq} = \left( {\cos \left( {\text{qz}} \right),\sin \left( {\text{qz}} \right),0} \right)\) [19]. In equilibrium nematic and cholesteric phases it holds \(f_{c}^{\left( n \right)} = 0\). In addition, each contribution in Eq. 3b equals to zero.

However, for a large enough value of \(K_{24}\) and \(q \ne 0\), BPs could be energetically advantageous due to the saddle-splay contribution [14]. Note that in the latter contribution is locally different from zero if \(\vec{n}\) twists simultaneously along two orthogonal directions, where more details are given in Ref. [14]. In these structures all Frank elastic term contribute, however it holds \(f_{c}^{\left( n \right)} < 0.\)

The smectic condensation term \(f_{c}^{\left( s \right)}\) (Eq. 3c) enforces translational LC order for low enough temperatures. For example, for a positive value of as in non-chiral LCs the N–SmA phase transition is of second order at the critical temperature \(T_{NA} = T_{s}^{*} .\) Other scenario are presented in [29].

Finally, we focus on the smectic elastic free energy contribution \(f_{e}^{\left( s \right)}\), given in Eq. 3d. In the case of spatially constant smectic amplitude \(\eta\) it follows [29]

$$f_{e}^{\left( s \right)} = C_{\parallel } \eta^{2} \left| {q_{0} \vec{n} - \nabla \phi } \right|^{2} + C_{ \bot } \eta^{2} \left| {\vec{n} \times \nabla \phi } \right|^{2} .$$

For positive values of the smectic compressibility and smectic bend elastic constants the second term locally enforces parallel alignment of \(\vec{n}\) and \(\nabla \phi\) (i.e., smectic layer normal is aligned along \(\vec{n}\)). Let us assume that this is the case, where we set \(\vec{n} = \left( {0,0,1} \right)\) and \(\psi = \eta e^{\text{iqz}}\), corresponding to a parallel stack of smectic layers along the z-axis exhibiting the layer distance \(d = 2\pi /q\). It follows \(f_{e}^{\left( s \right)} = C_{\parallel } \eta^{2} \left( {q - q_{0} } \right)^{2}\), enforcing the equilibrium layer spacing \(d_{eq} \equiv \frac{2\pi }{q}_{0} = d.\) Note that chirality favors \(\nabla \times \vec{n} \ne 0\) which is incompatible with request \(q_{0} \vec{n} = \nabla \phi\) (see Eq. 4). In this case of the compressibility term favors melting of the smectic order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudimalla, A., Lavrič, M., Trček, M. et al. Nanoparticle-Stabilized Lattices of Topological Defects in Liquid Crystals. Int J Thermophys 41, 51 (2020). https://doi.org/10.1007/s10765-020-02631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02631-w

Keywords

Navigation