Skip to main content

Advertisement

Log in

Impact of Indian Geranium Grass Biodiesel Blends on Performance, Combustion and Emission Characteristics

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Indian Geranium Grass popularly known as palmarosa is widely grown in many parts of Indian Sub-continent and used for its aromatic flavor in South American and Middle East countries. In this current study, Indian Geranium Grass oil is blended with diesel in different proportions from 0 % to 100 % by volume and its impact on performance, combustion and emission characteristics is investigated in a single-cylinder diesel engine without any modification. The experimental results projected that the performance characteristics of Biodiesel blend IGG20 were better as it consumes 12 % lesser fuel of 0.39 kg·kWh−1 and 5 % higher brake thermal efficiency compared to other blends and also exhibited peak cylinder pressure of 75.31 bar and shorter ignition delay of 17.08-degree crank angle compared to diesel. Biodiesel blend IGG20 has a significant reduction in carbon monoxide of 23 %, smoke emission of 17.2 % emission. However, there is a slight increase in total hydrocarbon, oxides of nitrogen and carbon dioxide emissions of 2 %, 15.67 % and 14 % respectively compared to diesel which may be due to poor vaporization, incomplete combustion and reduced in-cylinder temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BSU:

Bosch smoke unit

BSFC:

Brake specific fuel consumption

BSU:

Bosch smoke unit

CO:

Carbon monoxide

DAS:

Data acquisition system

EGR:

Exhaust gas recirculation

EGT:

Exhaust gas temperature

HC:

Hydrocarbon

HRR:

Heat release rate

IGG:

Indian geranium grass

IGG10:

10 % IGG + 90 % diesel fuel

IGG20:

20 % IGG+ 80 % diesel fuel

IGG30:

30 % IGG+ 70 % diesel fuel

IGG40:

40 % IGG+ 60 % diesel fuel

IGG100:

100 % IGG

THC:

Total hydro carbon

CO:

Carbon monoxide

CO2 :

Carbon dioxide

NOx :

Oxides of nitrogen

HRR:

Heat release rate

SOC:

Start of combustion

CD:

Combustion duration

IC:

Internal compression

H2SO4 :

Sulfuric acid

ID:

Ignition delay

EGT:

Exhaust gas temperature

THC:

Total hydrocarbon

BTE:

Brake thermal efficiency

References

  1. P. Verma, M.P. Sharma, G. Dwivedi, Renew. Sustain. Energy Rev. 56, 319 (2016)

    Article  Google Scholar 

  2. B. Nyakuma, O. Oladokun, Y. Dodo, S. Wong, H. Uthman, M. Halim, Chem. Chem. Tech. 10, 493 (2016)

    Article  Google Scholar 

  3. T. Lei, Z. Wang, X. Chang, L. Lin, X. Yan, Y. Sun, X. Shi, X. He, J. Zhu, Energy 95, 29 (2016)

    Article  Google Scholar 

  4. Z.W.M.M. Phoo, L.F. Razon, G. Knothe, Z. Ilham, F. Goembira, C.F. Madrazo, S.A. Roces, S. Saka, Ind. Crops Prod. 54, 226 (2014)

    Article  Google Scholar 

  5. P.D. Patel, A. Lakdawala, S. Chourasia, R.N. Patel, Renew. Sustain. Energy Rev. 65, 24 (2016)

    Article  Google Scholar 

  6. C.S. Aalam, C.G. Saravanan, Ain Shams Eng. J. 8, 689 (2017)

    Article  Google Scholar 

  7. S. Lingesan, K. Annamalai, M. Parthasarathy, K.M. Ramalingam, B. Dhinesh, J.I.J. Lalvani, J. Test. Eval. 46, 20170246 (2018)

    Article  Google Scholar 

  8. H.S. Pali, N. Kumar, Y. Alhassan, Energy Convers. Manag. 90, 146 (2015)

    Article  Google Scholar 

  9. L. Subramani, M. Parthasarathy, D. Balasubramanian, K. Ramalingam, Renew. Energy 125, 568 (2018)

    Article  Google Scholar 

  10. V. Chandrasekaran, M. Arthanarisamy, P. Nachiappan, S. Dhanakotti, B. Moorthy, Transp. Res. Part D Transp. Environ. 46, 145 (2016)

    Article  Google Scholar 

  11. P. Verma, M.P. Sharma, Fuel 180, 164 (2016)

    Article  Google Scholar 

  12. K. Alagu, H. Venu, J. Jayaraman, V.D. Raju, L. Subramani, P. Appavu, Energy 179, 295 (2019)

    Article  Google Scholar 

  13. H. Venu, V.D. Raju, L. Subramani, Energy 174, 386 (2019)

    Article  Google Scholar 

  14. J. Nisar, R. Razaq, M. Farooq, M. Iqbal, R.A. Khan, M. Sayed, A. Shah, I. ur Rahman, Renew. Energy 101, 111 (2017)

    Article  Google Scholar 

  15. C.J. Guare, J. Chem. Educ. 68, 649 (1991)

    Article  Google Scholar 

  16. S. Janakiraman, T. Lakshmanan, V. Chandran, L. Subramani, J. Clean. Prod. 245, 118940 (2019)

    Article  Google Scholar 

  17. H. Venu, V.D. Raju, L. Subramani, P. Appavu, Renew. Energy 151, 88 (2019)

    Article  Google Scholar 

  18. H. Venu, L. Subramani, V.D. Raju, Renew. Energy 140, 245 (2019)

    Article  Google Scholar 

  19. L. Subramani, H. Venu, Heat Mass Transfer 55, 1513 (2019)

    Article  ADS  Google Scholar 

  20. L. Subramani, M. Parthasarathy, D. Balasubramanian, Renew. Energy 125, 568 (2018)

    Article  Google Scholar 

  21. A. Sivalingam, A. Kandhasamy, A. Senthil Kumar, E. Perumal Venkatesan, L. Subramani, K. Ramalingam, J.P.J. Thadhani, H. Venu, Heat Mass Transfer 55, 3613 (2019)

    Article  ADS  Google Scholar 

  22. H. Venu, V.D. Raju, L. Subramani, Heat Mass Transfer 55, 2931 (2019)

    Article  ADS  Google Scholar 

  23. H. Venu, V.D. Raju, L. Subramani, Energy 174, 386 (2019)

    Article  Google Scholar 

  24. V.D. Raju, H. Venu, L. Subramani, P.S. Kishore, P.L. Prasanna, D.V. Kumar, Energy 203, 117821 (2020)

    Article  Google Scholar 

  25. V.D. Raju, H. Venu, L. Subramani, S.R. Reddy, Recent Technologies for Enhancing Performance and Reducing Emissions in Diesel Engines (IGI Global, 2020), pp. 138–158

  26. E. Perumal Venkatesan, A. Kandhasamy, L. Subramani, A. Sivalingam and A. Senthil Kumar, J. Test. Eval. 47, 20170357 (2018)

    Article  Google Scholar 

  27. T. Srinivas Rao, S. Jakeer Hussain, V. Dhana Raju, H. Venu, and L. Subramani, Int. J. Ambient Energy 1 (2019)

  28. D. Swamy, Y. Kowsik, V. Dhana Raju, K. Appa Rao, H. Venu, L. Subramani, and K. Bala Prasad, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (2019), pp. 1–19

  29. R. Sathiyamoorthi, G. Sankaranarayanan, K. Pitchandi, Appl. Therm. Eng. 112, 1421 (2017)

    Article  Google Scholar 

  30. R. Sathiyamoorthi, G. Sankaranarayanan, Renew. Energy 101, 747 (2017)

    Article  Google Scholar 

  31. D. Balasubramanian, S.R. Sokkalingam Arumugam, L. Subramani, I.J.R.L. Joshua Stephen Chellakumar, A. Mani, Environ. Sci. Pollut. Res. 25, 2273 (2018)

    Article  Google Scholar 

  32. H. Venu, Environ. Sci. Pollut. Res. 26, 14660 (2019)

    Article  Google Scholar 

  33. H. Venu, V. Madhavan, Environ. Sci. Pollut. Res. 30, 2361 (2016)

    Google Scholar 

  34. K. Ramalingam, A. Kandasamy, L. Subramani, D. Balasubramanian, and J. Paul James Thadhani, Atmos. Pollut. Res. 9, 959 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ganapathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganapathi, A., Muralidharan, K. Impact of Indian Geranium Grass Biodiesel Blends on Performance, Combustion and Emission Characteristics. Int J Thermophys 41, 137 (2020). https://doi.org/10.1007/s10765-020-02706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02706-8

Keywords

Navigation