Skip to main content
Log in

A hybrid ICA Kalman predictor algorithm for ocular artifacts removal

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Electroencephalogram (EEG) is a record of the electrical activity of the brain and is a tool which gives an insight into the brain functions thereby helping the physicians to diagnose various abnormalities. Blinking or moving the eyes produces large electrical potential around the eyes known as Electrooculogram (EOG), which is a non-cortical activity that spreads across the scalp and contaminates the EEG and such contaminating potentials are called Ocular Artifacts (OA). EEG recordings are significantly distorted by OA, causing problems for analysis and interpretation by clinicians and a nuisance for researchers who investigate the electrophysiology of the brain. Hence, a control procedure for removal of OA from EEG is essential for interpreting EEG properly. In this paper, a hybrid ICA-Kalman Predictor algorithm is proposed to classify the independent components obtained from JADE (Joint Approximation Diagonalization of Eigen matrices) algorithm and remove OA automatically. The proposed design is implemented in matlab and the Mean Squared Error (MSE) of proposed Kalman method was 0.0017, significantly lower compared to results using ICA and ANC, which were 0.0468 and 0.0052 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bach, F. R., & Jordan, M. I. (2002). Kernel independent component analysis. Journal of Machine Learning Research, 3, 1–48.

    MathSciNet  MATH  Google Scholar 

  • Baraud, Y., Comte, F., Viennet, G., et al. (2001). Adaptive estimation in autoregression or-mixing regression via model selection. The Annals of Statistics, 29(3), 839–875.

    Article  MathSciNet  Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

    Article  Google Scholar 

  • Belouchrani, A., Abed-Meraim, K., Cardoso, J., & Moulines, E. (1993). Second-order blind separation of temporally correlated sources. In: Proceedings of the international conference on digital signal processing, (pp. 346–351). Citeseer.

  • Cardoso, J. F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11(1), 157–192.

    Article  Google Scholar 

  • Choi, S., Cichocki, A., & Beloucharni, A. (2002). Second order nonstationary source separation. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 32(1–2), 93–104.

    Article  Google Scholar 

  • Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287–314.

    Article  Google Scholar 

  • Hyvärinen, A., & Oja, E. (1998). Independent component analysis by general nonlinear hebbian-like learning rules. Signal Processing, 64(3), 301–313.

    Article  Google Scholar 

  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.

    Article  Google Scholar 

  • Jung, T.P., Makeig, S., Lee, T.W., McKeown, M.J., Brown, G., Bell, A.J., Sejnowski, T.J., et al. (2000). Independent component analysis of biomedical signals. In: Proceedings of the international workshop on independent component analysis and signal separation, (pp. 633–644). Citeseer.

  • Jyothi, G. N., & Sridevi, S. (2018). Low power, low area adaptive finite impulse response filter based on memory less distributed arithmetic. Journal of Computational and Theoretical Nanoscience, 15(6–7), 2003–2008.

    Article  Google Scholar 

  • Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441.

    Article  Google Scholar 

  • Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. Advances in Neural Information Processing Systems, 8, 145–151.

    Google Scholar 

  • Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530.

    Article  MathSciNet  Google Scholar 

  • Molgedey, L., & Schuster, H. G. (1994). Separation of a mixture of independent signals using time delayed correlations. Physical Review Letters, 72(23), 3634.

    Article  Google Scholar 

  • Praetorius, H., Bodenstein, G., & Creutzfeldt, O. (1977). Adaptive segmentation of eeg records: A new approach to automatic EEG analysis. Electroencephalography and Clinical Neurophysiology, 42(1), 84–94.

    Article  Google Scholar 

  • Rohál’ová, M., Sykacek, P., Koskaand, M., & Dorffner, G. (2001). Detection of the eeg artifacts by the means of the (extended) kalman filter. Measurement Science Review, 1(1), 59–62.

    Google Scholar 

  • Schultz, C. A., Myers, S. C., Hipp, J., & Young, C. J. (1998). Nonstationary bayesian kriging: A predictive technique to generate spatial corrections for seismic detection, location, and identification. Bulletin of the Seismological Society of America, 88(5), 1275–1288.

    Google Scholar 

  • Shoker, L., Sanei, S., & Chambers, J. (2005). Artifact removal from electroencephalograms using a hybrid bss-svm algorithm. IEEE Signal Processing Letters, 12(10), 721–724.

    Article  Google Scholar 

  • Stögbauer, H., Kraskov, A., Astakhov, S. A., & Grassberger, P. (2004). Least-dependent-component analysis based on mutual information. Physical Review E, 70(6), 066–123.

    Article  Google Scholar 

  • Supriya, P., & Nambiar, P. (2012). Integrated kalman-independent component analysis method for harmonic current estimation on an interconnected four bus simulated and laboratory model. International Journal of Emerging Electric Power Systems, 13(3), 1. https://doi.org/10.1515/1553-779X.2969.

    Article  Google Scholar 

  • Zhang, J., Welch, G., Bishop, G., & Huang, Z. (2013). A two-stage kalman filter approach for robust and real-time power system state estimation. IEEE Transactions on Sustainable Energy, 5(2), 629–636.

    Article  Google Scholar 

  • Ziehe, A., & Müller, K.R. (1998). Tdsep–An efficient algorithm for blind separation using time structure. In: International conference on artificial neural networks, (pp. 675–680). Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Prasad Devulapalli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devulapalli, S.P., Chanamallu, S.R. & Kodati, S.P. A hybrid ICA Kalman predictor algorithm for ocular artifacts removal. Int J Speech Technol 23, 727–735 (2020). https://doi.org/10.1007/s10772-020-09721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-020-09721-y

Keywords

Navigation