Skip to main content
Log in

Simple Derivation of Minimum Length, Minimum Dipole Moment and Lack of Space–Time Continuity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The principle of maximum power makes it possible to summarize special relativity, quantum theory and general relativity in one fundamental limit principle each. Special relativity contains an upper limit to speed; following Bohr, quantum theory is based on a lower limit to action; recently, a maximum power given by c 5/4G was shown to be equivalent to the full field equations of general relativity. Taken together, these three fundamental principles imply a limit value for every physical observable, from acceleration to size. The new, precise limit values differ from the usual Planck values by numerical prefactors of order unity. Among others, minimum length and time intervals appear. The limits imply that elementary particles are not point-like and suggest a lower limit on electric dipole values. The minimum intervals also imply that the non-continuity of space–time is an inevitable result of the unification of quantum theory and relativity, independently of the approach used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahluwalia, D. V. (1994). Quantum measurement, gravitation, and locality. Physics Letters B 339, 301–303, or gr-qc/9308007.

    Google Scholar 

  • Akama, K., Hattori, T., and Katsuura, K. (2002). Naturalness bounds on dipole moments from new physics. Physical Review Letters 88, 201601 hep-ph/0111238.

  • Amati, D., Ciafaloni, M., and Veneziano, G. (1987). Superstring collisions at Planckian energies. Physics Letters B 197, 81–88.

    Article  ADS  Google Scholar 

  • Amelino-Camelia, G. (1994). Limits on the measurability of space–time distances in (the semi-classical approximation of) quantum gravity. Modern Physics Letters A 9, 3415–3422, and gr-qc/9603014.

    Google Scholar 

  • Ashtekar, A. (2005)., Quantum geometry and gravity: recent advances, gr-qc/0112038 and Ashtekar, A. (2005). Quantum geometry in Graphs and Patterns in Mathematics and Theoretical Physics: Proceedings of the Conference dedicated to Dennis Sullivan's 60th birthday, June 14–21}, 2001, Stony Brook University, Stony Brook, NY Mikhail Lyubich, Leon Takhtajan, editors, American Mathematical Society, Providence, R.I., or math-ph/0202008.

  • Aspinwall, P. (1994). Minimum distances in non-trivial string target spaces. Nuclear Physics B 431, 78–96, or hep-th/9404060.

    Google Scholar 

  • Bohr, N. (1931). Atomtheorie und Naturbeschreibung, Springer, Berlin, p. 16.

    Google Scholar 

  • Bohr, N. (1961). Atomic Physics and Human Knowledge, Science Editions, New York.

  • Caianiello, E. R. (1984). Lettere al Nuovo Cimento 41, 370.

    Google Scholar 

  • Commins, E. D., Ross, S. B., DeMille, D., and Regan, B. C. (1994). Improved experimental limit on the electric dipole moment of the electron. Physical Review A 50, 2960.

    Article  ADS  Google Scholar 

  • D'Inverno, R. (1992). Introducing Einstein's Relativity, Clarendon Press, p. 36.

  • Doplicher, S., Fredenhagen, K., and Roberts, J. E. (1994). Space–time quantization induced by classical gravity. Physics Letters B 331, 39–44.

    Article  ADS  MathSciNet  Google Scholar 

  • Garay, L. (1995). Quantum gravity and minimum length. International Journal of Modern Physics A 10, 145–165, or gr-qc/9403008.

    Google Scholar 

  • Gibbons, G. W. (2002). The maximum tension principle in general relativity. Foundations of Physics 32, 1891–1901.

    Article  MathSciNet  Google Scholar 

  • Gross, D. J. and Mende, P. F. (1987). The high energy behavior of string scattering amplitudes. Physics Letters B 197, 129–134.

    Article  ADS  MathSciNet  Google Scholar 

  • Jacobson, T. (1995). Thermodynamics of spacetime: the Einstein equation of state. Physical Review Letters 75, 1260–1263.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Jaekel, M.-T., and Renaud, S. (1994). Gravitational quantum limit for length measurement. Physics Letters A 185, 143–148.

    Article  ADS  Google Scholar 

  • Jammer, M. (1974). The Philosophy of Quantum Mechanics, Wiley, first edition, pp. 90–91.

  • Ju, L., Blair, D. G., and Zhao, C. (2000). Detection of gravitational waves. Reports on Progress in Physics 63, 1317–1427.

    Article  ADS  Google Scholar 

  • Kempf, A. (1994). Quantum Groups and quantum field theory with nonzero minimal uncertainties in positions and momenta Czechoslovak Journal of Physics 44, 1041–1048.

    Article  ADS  MathSciNet  Google Scholar 

  • Kempf, A. (1994). Uncertainty relation in quantum mechanics with quantum group symmetry. Journal of Mathematical Physics 35, 4483–4496.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Konishi, K., Paffuti, G., and Provero, P. (1990). Minimum physical length and the generalized uncertainty principle. Physics Letters B 234, 276–284.

    Article  ADS  MathSciNet  Google Scholar 

  • Lamoreaux, S. K. (2001). Solid state systems for electron electric dipole moment and other fundamental measurements, nucl-ex/0109014.

  • Loll, R. (1995). The volume operator in discretized quantum gravity. Physical Review Letters, 75 3048–3051.

    Google Scholar 

  • Maggiore, M. (1993). A generalised uncertainty principle in quantum mechanics. Physics Letters B 304, 65–69.

    Article  ADS  Google Scholar 

  • Mead, C. A. (1964). Possible connection between gravitation and fundamental length. Physical Review B 135, 849–862.

    Article  ADS  MathSciNet  Google Scholar 

  • Misner, C., Thorne, K., and Wheeler, J. A. (1973). Gravitation, Freeman, p. 980.

  • Ng, Y. J., and Van Dam, H. (1994). Limit to space–time measurement. Modern Physics Letters A, 9 335–340.

    Article  ADS  Google Scholar 

  • Padmanabhan, T. (1987). Limitations on the operational definition of space–time events and quantum gravity. Classical and Quantum Gravity 4, L107–L113.

    Article  ADS  Google Scholar 

  • Papini, G. (2002). Shadows of a maximal acceleration. Physics Letters A, 305, 359–364.

    Google Scholar 

  • Rindler, W. (2001). Relativity, Special, General and Cosmological, Oxford University Press, p. 70.

  • Romalis, M. V., Griffith, W. C., Jacobs, J. P., and Fortson, E. N. (2001). New limit on the permanent electric dipole moment of 199Hg. Physical Review Letters 86, 2505–2508, or hep-ex/0012001.

    Google Scholar 

  • Rovelli, C., and Smolin, L. (1995). Discreteness of area and volume in quantum gravity. Nuclear Physics B 442, 593–619.

    Article  ADS  MathSciNet  Google Scholar 

  • Sakharov, A. D. (1968). Vacuum quantum fluctuations in curved space and the theory of gravitation. Soviet Physics—Doklady 12, 1040–1041.

    ADS  Google Scholar 

  • Schiller, C. (1997–2004). Motion Mountain—A Hike Beyond Space and Time Along the Concepts of Modern Physics (http://www.motionmountain.net), Section 7: Maximum force—a simple principle encompassing general relativity.

  • Schiller, C. (1997–2005). Motion Mountain – A Hike Beyond Space and Time Along the Concepts of Modern Physics (http://www.motionmountain.net), Section 19: Minimum action – quantum theory for poets and lawyers.

  • Schiller, C. (1998). Le vide diffère-t-il de la matière? In: Gunzig, E., and Diner, S. (Eds.), Le vide—Univers du tout et du rien—Des physiciens et des philosophes s'interrogent, Les Editions de l'Université de Bruxelles. For an extended English language version see Schiller, C., Motion Mountain – A Hike Beyond Space and Time Along the Concepts of Modern Physics (http://www.motionmountain.net, 1997–2005), Section 34: Does matter differ from vacuum?

  • Schiller, C. (2005). General relativity and cosmology derived from the principle of maximum force or power. International Journal of Theoretical Physics. 44, 1629–1647.

    Google Scholar 

  • Schön, M. (1993). Operative time definition and principal indeterminacy, gr=qc/9304024.

  • Schwinger, J. (2001). Quantum Mechanics - Symbolism of Atomic Measurements, edited by Englert, B.-G., Springer Verlag.

  • Townsend, P. K. (1977). Small-scale structure of space–time as the origin of the gravitational constant. Physical Review D 15, 2795–2801.

    Article  ADS  MathSciNet  Google Scholar 

  • Wolf, C. (1994). Upper limit for the mass of an elementary particle due to discrete time quantum mechanics. Il Nuovo Cimento B 109, 213–218.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schiller.

Additional information

PACS numbers: 04.20.Cv; 13.40.Em; 04.60.-m.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, C. Simple Derivation of Minimum Length, Minimum Dipole Moment and Lack of Space–Time Continuity. Int J Theor Phys 45, 213–227 (2006). https://doi.org/10.1007/s10773-005-9018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-9018-7

Key Words

Navigation