Skip to main content
Log in

Information Complexity of Quantum Gates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper considers the realizability of quantum gates from the perspective of information complexity. Since the gate is a physical device that must be controlled classically, it is subject to random error. We define the complexity of gate operation in terms of the difference between the entropy of the variables associated with initial and final states of the computation. We argue that the gate operations are irreversible if there is a difference in the accuracy associated with input and output variables. It is shown that under some conditions the gate operation may be associated with unbounded entropy, implying impossibility of implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, C. H. (1982). The thermodynamics of computation—a review. International Journal of Theoretical Physics 21, 905–940.

    Article  ADS  Google Scholar 

  • DiVincenzo, D. P. (1995). Two-bit gates are universal for quantum computation. Physical Review A: Mathematical and General 51, 1015–1022.

    Article  ADS  Google Scholar 

  • Kak, S. (1998). Quantum information in a distributed apparatus. Foundations of Physics 28, 1005; Physics Archive: quant-ph/9804047

  • Kak, S. (1999). The initialization problem in quantum computing. Foundations of Physics 29, 267–279; quant-ph/9805002.

    Google Scholar 

  • Kak, S. (2000). Rotating a qubit. Information Sciences 128, 149–154; quant-ph/9910107.

    Google Scholar 

  • Kak, S. (2001a). Statistical constraints on state preparation for a quantum computer. Pramana 57, 683–688; quant-ph/0010109.

    Google Scholar 

  • Kak, S. (2001b). Are quantum computing models realistic? Physics Arxiv: quant-ph/0110040.

  • Kak, S. (2003a). General qubit errors cannot be corrected. Information Sciences 152, 195–202; quant-ph/0206144.

    Google Scholar 

  • Kak, S. (2003b). Teleportation protocols requiring only one classical bit. Physics Arxiv: quant-ph/0305085.

  • Knill, E. (2004a). Fault tolerant post-selected quantum computation. Physics Arxiv: quant-ph/0404104.

  • Knill, E. (2004b). Quantum computing with very noisy devices. Physics Arxiv: quant-ph/0410199.

  • Knill, E. and Laflamme, R. (1997). A theory of quantum error-correcting codes. Physical Review A: Mathematical and General 55, 900–906.

    Article  ADS  MathSciNet  Google Scholar 

  • Kitaev, A. Y. (1997). Quantum computations: algorithms and error correction. Russian Mathematical Surveys 52, 1191–1249.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183.

    Article  MathSciNet  MATH  Google Scholar 

  • Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge University Press.

  • Steane, A. M. (1999). Efficient fault-tolerant quantum computing. Nature 399, 124–126.

    Article  ADS  Google Scholar 

  • Svore, K., Terhal, B. M., and DiVincenzo, D. P. (2004). Local fault-tolerant quantum computation. Physics Arxiv: quant-ph/0410047.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Kak.

Additional information

PACS number: 03.65

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kak, S. Information Complexity of Quantum Gates. Int J Theor Phys 45, 933–941 (2006). https://doi.org/10.1007/s10773-006-9086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9086-3

Key Words

Navigation