Skip to main content
Log in

Deterrents to a Theory of Quantum Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

As shown previously, quantum mechanics directly violates the weak equivalence principle in general, and thus indirectly violates the strong equivalence principle in all dimensions. The present paper shows that quantum mechanics also directly violates the strong equivalence principle unless it is arbitrarily abetted in hindsight. Vital domains are shown to exist in which quantum gravity would be non-applicable. There are classical subtleties in which the strong equivalence principle appears to be violated, but is not. Neutron free fall interference experiments in a gravitational field are examined, as is Galileo's falling body assertion and the misconception it leads to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argyres, P. C., Dimopoulos, S., and March-Russell, J. (1998). Journal Physics Letter B441, 96.

    ADS  MathSciNet  Google Scholar 

  • Chiao, R. Y. and Steinberg, A. M. (1997). In: E. Wolf, (ed.) Progress in Optics XXXVII, Elsevier, Amsterdam, p. 345.

    Google Scholar 

  • Colella, R., Overhauser, A. W., and Werner, S. A. (1975). Physical Review Letters 34, 1472.

    Article  ADS  Google Scholar 

  • Eötvös, R. (1892). Math. Nat. Ber. Ungarn 8, 65.

    Google Scholar 

  • Einstein, A. (1917). German Physical Society. Translated in The Collected Papers of Albert Einstein, (1997) 6, Princeton Univ. Press, Princeton, N.J, p. 434.

    Google Scholar 

  • Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., and Aronson, S. H. (1986). Physical Review Letters 56, 3.

    Article  ADS  Google Scholar 

  • Greenberger, D. M. and Overhauser, A. W. (1980). Scientific American 242, 72.

    Article  ADS  Google Scholar 

  • Keller, J. B. (1958). Annals of Physics (NY) 4, 180.

    Article  MATH  ADS  Google Scholar 

  • Littrell, K. C., Allman, B. E., and Werner, S. E. (1997). Physical Review 56A, 1767.

    ADS  Google Scholar 

  • Rabinowitz, M. (1990). IEEE Power Engr. Review 10, 27.

    Article  Google Scholar 

  • Rabinowitz, M. (2001). International Journal of Theoretical Physics 40, 875. ArXiv: astsro-physics/0506029.

    Article  MATH  Google Scholar 

  • Rabinowitz, M. (2005). Black Hole Paradoxes. In Trends in Black Hole Research (Nova Science Publishers, N.Y., pp. 1–45). ArXiv:astro-ph/0412101.

    Google Scholar 

  • Rabinowitz, M. (2006a). International Journal of Theoretical Physics 45, 851. ArXiv: physics/0506029.

    Article  MathSciNet  ADS  Google Scholar 

  • Rabinowitz, M. (2006b). Concepts of Physics III, 323. ArXiv: physics/0601218.

    Google Scholar 

  • Rohrlich, F. (1965). Classical Charged Particles, Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Rosenfeld, L. (1930) Ann. Der Physik 5, 113.

    Article  ADS  Google Scholar 

  • Staudenmann, J. L., Werner, S. A., Colella, R., and Overhauser, A. W. (1980). Physical Review A21, 1419.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabinowitz, M. Deterrents to a Theory of Quantum Gravity. Int J Theor Phys 46, 1403–1415 (2007). https://doi.org/10.1007/s10773-006-9278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9278-x

Navigation