Skip to main content
Log in

New Quantum Private Comparison Protocol Using χ-Type State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a new quantum private comparison protocol based on the four-particle χ-type states. Different from previous protocols using the four-particle χ-type states, our protocol have some advantages. Without using the entangled character, we only need to prepare one type of χ-type state and N χ-type states. And we use the Pauli local unitary operation on particles to encode the information and to extract information by measurement. We also discuss that our protocol can withstand all various kinds of outside attacks and participant attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 67, 557–559 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  5. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  6. Guo, F.Z., Gao, F., Wen, Q.Y., Zhu, F.C.: A two-step channel-encrypting quantum key distribution protocol. Int. J. Quantum Inf. 8, 1013–1022 (2010)

    Article  MATH  Google Scholar 

  7. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum key distribution by constructing nonorthogonal states with Bell states. Int. J. Mod. Phys. B 24, 4611–4618 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 052307 (1999)

    Article  Google Scholar 

  9. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 162–168 (2004)

    Article  Google Scholar 

  10. Deng, F.G., Zhou, H.Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337, 329–334 (2005)

    Article  ADS  MATH  Google Scholar 

  11. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  14. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  15. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure communication scheme with W state. Commun. Theor. Phys. 48, 637–640 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  17. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Robust quantum secure direct communication over collective rotating channel. Commun. Theor. Phys. 53, 645–647 (2010)

    Article  ADS  MATH  Google Scholar 

  18. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Bouwmeester, D., Pan, J.W., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  20. Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multi-party quantum summation. Acta Phys. Sin. 56, 6214 (2007)

    MathSciNet  Google Scholar 

  21. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793–2804 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 012333 (2007)

    Article  ADS  Google Scholar 

  23. Li, Y., Zeng, G.H.: Quantum anonymous voting systems based on entangled state. Opt. Rev. 15, 219 (2008)

    Article  Google Scholar 

  24. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  25. Markus, J., Moti, Y.: Proving without knowing: on oblivious, agnostic and blindolded provers. In: Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology, pp. 186–200 (1996)

    Google Scholar 

  26. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  27. Chen, X.B., Xu, G., Niu, X.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  28. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. (2011). doi:10.1007/s11128-011-0251-0

    Google Scholar 

  29. Liu, W., Wang, Y.B., Tao, J.Z.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 1561–1565 (2011)

    Article  ADS  Google Scholar 

  30. Liu, W., Wang, Y.B., Tao, J.Z., Cao, Y.Z.: A protocol for the quantum private comparison of equality with chi-type state. Int. J. Theor. Phys. (2011). doi:10.1007/s10773-011-0878-8

    Google Scholar 

  31. Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  33. Lin, S., Gao, F., Guo, F.Z., et al.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. Lin, S., Wen, Q.Y., Gao, F., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom–Felbinger protocol. Opt. Commun. 281, 4553 (2008)

    Article  ADS  Google Scholar 

  35. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  36. Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  37. Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the High Technology Research and Development Program of China (863 Program, 2011AA01A107); Beijing Municipal Special Fund for Cultural and Creative Industries (2009); the National “211” Development Fund for Key Engineering Programs; and the Beijing Municipal Natural Science Foundation (4112052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Wang, YB., Jiang, ZT. et al. New Quantum Private Comparison Protocol Using χ-Type State. Int J Theor Phys 51, 1953–1960 (2012). https://doi.org/10.1007/s10773-011-1073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1073-7

Keywords

Navigation