Skip to main content
Log in

Efficient Quantum Circuit for Encoding and Decoding of the [[8,3,5]] Stabilizer Code

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A general protocol for constructing a complete efficient encoding and decoding quantum circuit of the [[8,3,5]] stabilizer code is proposed. The [[8,3,5]] stabilizer code is an eight-qubit code that protects a three-qubit state with up to one error, which is very important for quantum information processing. Single-qubit operations, two-qubit controlled gates and Toffoli gates are required in the proposed circuit. The current protocol can be generalized to all quantum stabilizer codes satisfying quantum Hamming bound, and implemented in some quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  2. Zhang, Y., Zhou, Z.W., Yu, B., Guo, G.C.: Phys. Rev. A 69, 042315 (2004)

    Article  ADS  Google Scholar 

  3. Wu, L.-A., Zanardi, P., Lidar, D.A.: Phys. Rev. Lett. 95, 130501 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Brooke, P.G.: Phys. Rev. A 75, 022320 (2007)

    Article  ADS  Google Scholar 

  5. Duan, L.M., Guo, G.C.: Phys. Rev. Lett. 79, 1953 (1997)

    Article  ADS  Google Scholar 

  6. Duan, L.M., Guo, G.C.: Phys. Rev. A 57, 737 (1998)

    Article  ADS  Google Scholar 

  7. Nielsen, M.A.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Shor, P.W.: Phys. Rev. A 52, 2493 (1995)

    Article  ADS  Google Scholar 

  9. Calderbank, A.R., Shor, P.W.: Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  10. Steane, A.M.: Phys. Rev. Lett. 77, 793 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Cleve, R.: Phys. Rev. A 55, 4054 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  12. Gottesman, D.: Phys. Rev. A 54, 1862 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  13. Cleve, R., Gottesman, D.: Phys. Rev. A 56, 76 (1997)

    Article  ADS  Google Scholar 

  14. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: IEEE Trans. Inf. Theory 44, 1369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: IEEE Trans. Inf. Theory 52, 4892 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, C.H., Tsai, Y.C., Tsai, H.L.: IEEE Int. Symp. Circuits Syst. Proc. 3, 2333 (2005)

    Google Scholar 

  17. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Phys. Rev. Lett. 77, 198 (1996)

    Article  ADS  Google Scholar 

  18. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  19. Cafaro, C., Mancini, S.: Phys. Rev. A 82, 012306 (2010)

    Article  ADS  Google Scholar 

  20. Loss, D., DiVincenzo, D.P.: Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  21. Li, X.Q., Wu, Y.W., Steel, D.C., Gammon, D., et al.: Science 301, 809 (2003)

    Article  ADS  Google Scholar 

  22. Li, X.Q., Yan, Y.J.: Phys. Rev. B 65, 205301 (2002)

    Article  ADS  Google Scholar 

  23. Hanson, R., Burkard, G.: Phys. Rev. Lett. 98, 050502 (2007)

    Article  ADS  Google Scholar 

  24. Stepanenko, D., Burkard, G.: Phys. Rev. B 75, 085324 (2007)

    Article  ADS  Google Scholar 

  25. Hao, X., Zhu, S.Q.: Phys. Rev. A 76, 044306 (2007)

    Article  ADS  Google Scholar 

  26. Zhang, H., Guo, G.P., Tu, T., Guo, G.C.: Phys. Rev. A 76, 012335 (2007)

    Article  ADS  Google Scholar 

  27. Dong, P., Cao, Z.L.: Phys. Lett. A 373, 1527 (2009)

    Article  ADS  MATH  Google Scholar 

  28. Wu, Y., Payne, M.G., Hagley, E.W., Deng, L.: Phys. Rev. A 69, 063803 (2004)

    Article  ADS  Google Scholar 

  29. Xue, Z.Y.: Europhys. Lett. 93, 20007 (2011)

    Article  ADS  Google Scholar 

  30. Xue, Z.Y., Wang, Z.D., Zhu, S.L.: Phys. Rev. A 77, 024301 (2008)

    Article  ADS  Google Scholar 

  31. Xue, Z.Y., Wang, Z.D.: Phys. Rev. A 75, 064303 (2007)

    Article  ADS  Google Scholar 

  32. Chen, C.Y., Feng, M., Gao, K.L.: Phys. Rev. A 73, 064304 (2006)

    Article  ADS  Google Scholar 

  33. Chen, C.Y., Li, S.H.: Eur. Phys. J. D 41, 557 (2007)

    Article  ADS  Google Scholar 

  34. Ralph, T.C., Resch, K.J., Gilchrist, A.: Phys. Rev. A 75, 022313 (2007)

    Article  ADS  Google Scholar 

  35. Shao, X.Q., Zhu, A.D., Zhang, S., Chung, J.S., Yeon, K.H.: Phys. Rev. A 75, 034307 (2007)

    Article  ADS  Google Scholar 

  36. Ionicioiu, R., Spiller, T.P., Munro, W.J.: Phys. Rev. A 80, 012312 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. Lin, Q., Li, J.: Phys. Rev. A 79, 022301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. Borrelli, M., Mazzola, L., Paternostro, M., Maniscalco, S.: Phys. Rev. A 84, 012314 (2011)

    Article  ADS  Google Scholar 

  39. Yang, C.P., Han, S.: Phys. Rev. A 72, 032311 (2005)

    Article  ADS  Google Scholar 

  40. Ottaviani, C., Vitali, D.: Phys. Rev. A 82, 012319 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC) under Grant Nos:11005029, 10905024 and 61073048, China Postdoctoral Science Foundation under Grant No. 2011M501373, the Natural Science Foundation of Anhui Province under Grant No. 10040606Q51, the Key Program of the Education Department of Anhui Province under Grant Nos. KJ2011A242, KJ2010ZD08, the Talent Foundation of Anhui Province under Grant No. 2009Z022, the Key Program of Research Base of Hefei Normal University under Grant No. 2012jd13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Dong.

Appendix: Construction of the Code Words of the [[8, 3, 5]] Stabilizer Code

Appendix: Construction of the Code Words of the [[8, 3, 5]] Stabilizer Code

According to Eq. (3), M 5 has no effect on the generation of the quantum code word of [[8,3,5]] stabilizer code, thus the term (1+M 5) can be eliminated, the code word of the [[8,3,5]] stabilizer code can be reduced as

(7)

Then, we combine Eqs. (6) with (3), the detailed code words of the [[8,3,5]] can be listed as following

According to the above equations, the encoding rule of the [[8,3,5]] stabilizer code can be reduced to

(8)

where m=c 2c 3, \(\overline{m}=n=\overline{c_{2}\oplus c_{3}}\), \(a=(-1)^{c_{1}}\) and \(b=(-1)^{\overline{c}_{1}}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, P., Liu, J. & Cao, ZL. Efficient Quantum Circuit for Encoding and Decoding of the [[8,3,5]] Stabilizer Code. Int J Theor Phys 52, 1274–1281 (2013). https://doi.org/10.1007/s10773-012-1442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1442-x

Keywords

Navigation