Skip to main content
Log in

Unscrambling the Quantum Omelette

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on recent theorems about quantum value-indefiniteness it is conjectured that many issues of “Born’s quantum mechanics” can be overcome by supposing that only a single pure state exists; and that the quantum evolution permutes this state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation in Ref. [45]

    MATH  Google Scholar 

  2. Jaynes, E.T.: Probability in quantum theory. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information: Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, May–June, 1989, Santa Fe, New Mexico, pp. 381–404. Addison-Wesley, Reading (1990). http://bayes.wustl.edu/etj/articles/prob.in.qm.pdf

    Google Scholar 

  3. Boskovich, R.J.: De spacio et tempore, ut a nobis cognoscuntur. In: Child, J.M. (ed.) A Theory of Natural Philosophy, pp. 203–205. MIT Press, Cambridge (1966). First printed Open Court (1922) http://www.archive.org/details/theoryofnaturalp00boscrich

    Google Scholar 

  4. Toffoli, T.: The role of the observer in uniform systems. In: Klir, G.J. (ed.) Applied General Systems Research, Recent Developments and Trends, pp. 395–400. Plenum Press, New York (1978)

    Chapter  Google Scholar 

  5. Svozil, K.: Extrinsic-intrinsic concept and complementarity. In: Atmanspacher, H., Dalenoort, G.J. (eds.) Inside versus Outside. Springer Series in Synergetics, vol. 63, pp. 273–288. Springer, Berlin (1994). doi:10.1007/978-3-642-48647-0_15

    Chapter  Google Scholar 

  6. Summhammer, J.: The physical quantities in the random data of neutron interferometry. In: Bitsakis, E.I., Nicolaides, C.A. (eds.) The Concept of Probability, Fundamental Theories of Physics, vol. 24, pp. 207–219. Springer, Amsterdam (1989). doi:10.1007/978-94-009-1175-8

    Google Scholar 

  7. Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information: Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, May–June, 1989 Santa Fe, New Mexico. Addison-Wesley, Reading (1990) http://jawarchive.files.wordpress.com/2012/03/informationquantumphysics.pdf

    Google Scholar 

  8. Stace, W.T.: The refutation of realism. In: Feigl, H., Sellars, W. (eds.) Readings in Philosophical Analysis, pp. 364–372. Appleton-Century-Crofts, New York (1949). Previously published in Mind 53, 349–353 (1934)

    Google Scholar 

  9. Jaynes, E.T.: Clearing up mysteries—the original goal. In: Skilling, J. (ed.) Maximum-Entropy and Bayesian Methods:: Proceedings of the 8th Maximum Entropy Workshop, St. John’s College, Cambridge, England, August 1–5, 1988, pp. 1–28. Kluwer, Dordrecht (1989) http://bayes.wustl.edu/etj/articles/cmystery.pdf

    Chapter  Google Scholar 

  10. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37, 863–867 (1926). doi:10.1007/BF01397477

    Article  MATH  ADS  Google Scholar 

  11. Zeilinger, A.: The message of the quantum. Nature 438, 743 (2005). doi:10.1038/438743a

    Article  ADS  Google Scholar 

  12. Myrvold, W.C.: Statistical mechanics and thermodynamics: a maxwellian view. Stud. Hist. Philos. Mod. Phys. 42, 237–243 (2011). doi:10.1016/j.shpsb.2011.07.001

    Article  MATH  MathSciNet  Google Scholar 

  13. Bell, J.S.: Against ‘measurement’. Phys. World 3, 33–41 (1990) http://physicsworldarchive.iop.org/summary/pwa-xml/3/8/phwv3i8a26

    Google Scholar 

  14. Gold, M.E.: Language identification in the limit. Inf. Control 10, 447–474 (1967). doi:10.1016/S0019-9958(67)91165-5

    Article  MATH  Google Scholar 

  15. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28, 125–155 (1975). doi:10.1016/S0019-9958(75)90261-2

    Article  MATH  Google Scholar 

  16. Angluin, D., Smith, C.H.: Inductive inference: Theory and methods. ACM Comput. Surv. 15, 237–269 (1983). doi:10.1145/356914.356918

    Article  MathSciNet  Google Scholar 

  17. Adleman, L.M., Blum, M.: Inductive inference and unsolvability. J. Symb. Log. 56, 891–900 (1991). doi:10.2307/2275058

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, M., Vitányi, P.M.B.: Inductive reasoning and Kolmogorov complexity. J. Comput. Syst. Sci. 44, 343–384 (1992). doi:10.1016/0022-0000(92)90026-F

    Article  MATH  Google Scholar 

  19. Chaitin, G.J.: Computing the busy beaver function. In: Cover, T.M., Gopinath, B. (eds.) Open Problems in Communication and Computation, p. 108. Springer, New York (1987)

    Chapter  Google Scholar 

  20. Clifton, R.K.: Private communication (1995)

  21. Cabello, A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008). doi:10.1103/PhysRevLett.101.210401

    Article  MathSciNet  ADS  Google Scholar 

  22. Svozil, K.: How much contextuality? Nat. Comput. 11, 261–265 (2012). doi:10.1007/s11047-012-9318-9 arXiv:1103.3980

    Article  MathSciNet  Google Scholar 

  23. Svozil, K.: Time generated by intrinsic observers. In: Trappl, R. (ed.) Cybernetics and Systems ’96. Proceedings of the 13th European Meeting on Cybernetics and Systems Research, pp. 162–166. Austrian Society for Cybernetic Studies, Vienna (1996) http://tph.tuwien.ac.at/~svozil/publ/time1.htm

    Google Scholar 

  24. Knuth, K.H., Bahreyni, N.: The physics of events: a potential foundation for emergent space-time (2012). arXiv:1209.0881 [math-ph]

  25. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994). doi:10.1103/PhysRevLett.73.58

    Article  ADS  Google Scholar 

  26. Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–747 (1978). doi:10.1119/1.11393

    Article  ADS  Google Scholar 

  27. Abbott, A.A., Calude, C.S., Conder, J., Svozil, K.: Strong Kochen-Specker theorem and incomputability of quantum randomness. Phys. Rev. A 86, 062109 (2012). doi:10.1103/PhysRevA.86.062109, arXiv:1207.2029

    Article  ADS  Google Scholar 

  28. Abbott, A.A., Calude, C.S., Svozil, K.: Value indefiniteness is almost everywhere (2013). arXiv:1309.7188

  29. Pitowsky, I.: Infinite and finite Gleason’s theorems and the logic of indeterminacy. J. Math. Phys. 39, 218–228 (1998). doi:10.1063/1.532334

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Hrushovski, E., Pitowsky, I.: Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem. Stud. Hist. Philos. Mod. Phys. 35, 177–194 (2004). arXiv:quant-ph/0307139. doi:10.1016/j.shpsb.2003.10.002

    Article  MATH  MathSciNet  Google Scholar 

  31. Greechie, J.R.: Orthomodular lattices admitting no states. J. Comb. Theory 10, 119–132 (1971). doi:10.1016/0097-3165(71)90015-X

    Article  MATH  MathSciNet  Google Scholar 

  32. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966). doi:10.1103/RevModPhys.38.447

    Article  MATH  ADS  Google Scholar 

  33. Everitt, M.J., Munro, W.J., Spiller, T.P.: Quantum measurement with chaotic apparatus. Phys. Lett. A 374, 2809–2815 (2010). arXiv:0905.1867. doi:10.1016/j.physleta.2010.05.006

    Article  MATH  ADS  Google Scholar 

  34. Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29, 631–643 (1999). doi:10.1023/A:1018820410908

    Article  MathSciNet  Google Scholar 

  35. Toner, B.F., Bacon, D.: Communication cost of simulating Bell correlations. Phys. Rev. Lett. 91, 187904 (2003). doi:10.1103/PhysRevLett.91.187904

    Article  MathSciNet  ADS  Google Scholar 

  36. Svozil, K.: Communication cost of breaking the Bell barrier. Phys. Rev. A 72, 050302 (2005). arXiv:physics/0510050. doi:10.1103/PhysRevA.72.050302

    Article  MathSciNet  ADS  Google Scholar 

  37. Svozil, K., Tkadlec, J.: Greechie diagrams, nonexistence of measures in quantum logics and Kochen–Specker type constructions. J. Math. Phys. 37, 5380–5401 (1996). doi:10.1063/1.531710

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Specker, E.: Private communication to K. Svozil (1999)

  39. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. Math. J. 17, 59–87 (1967). doi:10.1512/iumj.1968.17.17004

    MATH  MathSciNet  Google Scholar 

  40. Everett, H. III: ‘Relative State’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957). doi:10.1103/RevModPhys.29.454

    Article  MathSciNet  ADS  Google Scholar 

  41. Wigner, E.P.: Remarks on the mind-body question. In: Good, I.J. (ed.) The Scientist Speculates, pp. 284–302. Heinemann and Basic Books, London (1961). http://www.phys.uu.nl/igg/jos/foundQM/wigner.pdf

    Google Scholar 

  42. Schrödinger, E.: The Interpretation of Quantum Mechanics, Dublin Seminars (1949–1955) and Other Unpublished Essays. Ox Bow, Woodbridge (1995)

    Google Scholar 

  43. Beltrametti, E., Chiara, M.L.D., Giuntini, R., Leporini, R., Sergioli, G.: Epistemic quantum computational structures in a Hilbert-space environment. Fundam. Inform. 115, 1–14 (2012). doi:10.3233/FI-2012-637

    MATH  MathSciNet  Google Scholar 

  44. Leff, H.S., Rex, A.F.: Maxwell’s Demon 2. Entropy, Classical and Quantum Information, Computing. Institute of Physics Publishing, Bristol and Philadelphia (1990)

    Book  Google Scholar 

  45. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

Download references

Acknowledgements

This research has been partly supported by FP7-PEOPLE-2010-IRSES-269151-RANPHYS. This contribution was done in part during a visiting honorary appointment at the University of Auckland, New Zealand, as well as at the University of Cagliary, Sardinia, Italy. Discussions during a LARSIM/QuPa workshop on physics and computation at the Institut Henri Poincaré, Paris, on June 28-29, 2012, the Biennial IQSA Conference Quantum Structures 2012 in Cagliari, Sardinia, on July 23-27, 2012, as well as the conference New Directions in the Foundations of Physics 2013, in Washington, D.C., on May 10-12, 2013, where previous versions of this paper have been presented, are gratefully acknowledged. I also gratefully acknowledge stimulating discussions with and comments by many peers; in particular, Alastair Abbott, Jeffrey Bub, Cristian S. Calude, William Demopoulos, Christopher Fuchs, and Constantine Tsinakis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Svozil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svozil, K. Unscrambling the Quantum Omelette. Int J Theor Phys 53, 3648–3657 (2014). https://doi.org/10.1007/s10773-013-1995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1995-3

Keywords

Navigation