Skip to main content
Log in

Design of Multiplexer-Based D Flip-Flop with Set and Reset Ability in Quantum Dot Cellular Automata Nanotechnology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Despite many advances in the electronics industry, much effort is being made to improve existing technologies. One of the proposed technologies in this field is the Quantum Cellular Automata (QCA), which provides low power, low area, high density, and high-speed structures. Latches and flip-flops are always the most commonly used circuits in digital design, and designing these structures with greater stability and capability is very important. In this paper, with the use of the appropriate D latch in terms of volume and delay, the edge sensitive D flip-flops in the QCA technology are introduced with the ability of set and reset based on optimized multiplexer design. The simulation results show that the proposed designs are stable and useful structures in terms of area, delay and complexity and are suitable for use in the larger circuits. For example proposed synchronous rising edge D flip-flop with set and reset pins has 74 quantum cells, 2.5 clock cycles delay and 0.09μm2 occupied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Srivastava S. Probabilistic modeling of quantum-dot cellular automata

  2. Compano, R., Molenkamp, L., Paul, D.J.: Roadmap for Nanoelectronics. European Commission IST Programme, Future and Emerging Technologies (2000)

    Google Scholar 

  3. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4(1), 49–57 (1993 Jan)

    Article  ADS  Google Scholar 

  4. Yang, X., Cai, L., Zhao, X.: Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. Electron. Lett. 46(12), 825–826 (2010)

    Article  Google Scholar 

  5. Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectron. J. 43(12), 929–940 (2012)

    Article  Google Scholar 

  6. Vetteth, A., Walus, K., Dimitrov, V.S., Jullien, G.A.: Quantum-dot cellular automata of flip-flops. ATIPS Laboratory. 2500, (2003)

  7. Sardinha, L.H., Silva, D.S., Vieira, M.A., Vieira, L.F., Neto, O.P.: Tcam/cam-qca:(ternary) content addressable memory using quantum-dot cellular automata. Microelectron. J. 46(7), 563–571 (2015)

    Article  Google Scholar 

  8. Abutaleb, M.M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)

    Article  Google Scholar 

  9. Yang, X., Cai, L., Zhao, X., Zhang, N.: Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron. J. 41(1), 56–63 (2010)

    Article  Google Scholar 

  10. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  11. Chakrabarty R, Mahato DK, Banerjee A, Choudhuri S, Dey M, Mandal NK. A novel design of flip-flop circuits using quantum dot cellular automata (QCA). InComputing and Communication Workshop and Conference (CCWC), 2018 IEEE 8th Annual 2018 Jan 8 (pp. 408–414). IEEE

  12. Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)

    Article  MATH  Google Scholar 

  13. Purkayastha, T., De, D., Chattopadhyay, T.: Universal shift register implementation using quantum dot cellular automata. Ain Shams Engineering Journal. 9 (2016)

  14. Shamsabadi, A.S., Ghahfarokhi, B.S., Zamanifar, K., Movahedinia, N.: Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J. Syst. Archit. 55(3), 180–187 (2009)

    Article  Google Scholar 

  15. Zoka, S., Gholami, M.: A novel rising edge triggered resettable D flip-flop using five input majority gate. Microprocess. Microsyst. 61, 327–335 (2018)

    Article  Google Scholar 

  16. Srivastava S, Asthana A, Bhanja S, Sarkar S. QCAPro-an error-power estimation tool for QCA circuit design. InCircuits and Systems (ISCAS), 2011 IEEE International Symposium on 2011 May 15 (pp. 2377–2380). IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Gholami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binaei, R., Gholami, M. Design of Multiplexer-Based D Flip-Flop with Set and Reset Ability in Quantum Dot Cellular Automata Nanotechnology. Int J Theor Phys 58, 687–699 (2019). https://doi.org/10.1007/s10773-018-3967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3967-0

Keywords

Navigation