Skip to main content
Log in

Nuclear Decay Parameter Oscillations as Possible Signal of Quantum-Mechanical Nonlinearity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Several experimental groups reported the evidence of periodic modulations of nuclear decay constants which amplitudes are of the order 10− 3 and periods of one year, 24 hours or about one month. We argue that such deviations from radioactive decay law can be described in nonlinear quantum mechanics framework, in which decay process obeys to nonlinear Shroedinger equation. Possible corrections to Hamiltonian of quantum system interaction with gravitation field considered. It’s shown that modified Doebner-Goldin model predicts decay parameter variations under influence of Sun gravity similar to experimental results for nuclear α-decay life-time oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, B.R.: Nuclear and Particle Physics: an Introduction. Wiley, New York (2011)

    Google Scholar 

  2. Alburger, D., et al.: Half-life of 32Si. Earth Plan Sci. Lett. 78, 168–176 (1986)

    Article  ADS  Google Scholar 

  3. Fischbach, E., et al.: Time-dependent nuclear decay parameters. Rev. Space Sci. 145, 285–335 (2009)

    Article  ADS  Google Scholar 

  4. Ellis, K.: Effective half-life of broad beam 238Pu, Be irradiator. Phys. Med. Biol. 35, 1079–1088 (1990)

    Article  Google Scholar 

  5. Alekseev, E., et al.: Results of search for daily and annual variations of Po-214 half-life at the two year observation period. Phys. Part. Nucl. 47, 1803–1815 (2016). ibid. 49, 557–564, (2018)

    Google Scholar 

  6. Lobashev, V., et al.: Direct search for mass of neutrino and anomaly in tritium beta-spectrum. Phys. Lett. B 460, 227–235 (1999)

    Article  ADS  Google Scholar 

  7. Shnoll, S., et al.: On discrete states due to macroscopic fluctuations. Phys. Usp. 162, 1129–1149 (1998)

    Article  Google Scholar 

  8. Namiot, V., Shnoll, S.: Fluctuations of nucleus decay statistics. Phys. Lett. A 359, 249–254 (2003)

    ADS  Google Scholar 

  9. Bialynicki-Birula, I., Mucielski, J.: Nonlinear wave mechanics. Ann. Phys. (N.Y.) 100, 62–93 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  10. Weinberg, S.: Nonlinearity in quantum mechanics. Ann. Phys. (N.Y.) 194, 336–385 (1989)

    Article  ADS  Google Scholar 

  11. Doebner, H.-D., Goldin, G.: On general nonlinear Schoedinger Equation. Phys. Lett. A 162, 397–401 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  12. Doebner, H.-D., Goldin, G.: Introducing nonlinear gauge transformations. Phys. Rev. A 54, 3764–3771 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kossert, K., Nahl, O.: Long-term measurement of Cl-36 decay rate. Astrop. Phys. 55, 33 (2014)

    Article  ADS  Google Scholar 

  14. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, Oxford (1976)

    MATH  Google Scholar 

  15. Fonda, L., Ghirardi, G.C., Rimini, A.: Decay theory of unstable quantum systems. Rep. Progr. Phys. 41, 587–632 (1978)

    Article  ADS  Google Scholar 

  16. Gamow, G.: Theory of radioactive nucleus α-decay. Zc. Phys. 51, 204–218 (1928)

    Article  ADS  Google Scholar 

  17. Newton, R.R.: Dynamics of unstable systems and resonances. Ann. Phys. 14, 333–358 (1961)

    Article  ADS  Google Scholar 

  18. Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Reading (1968)

    MATH  Google Scholar 

  19. Jordan, T.: Assumptions that imply quantum mechanics is linear. Phys. Rev. A 73, 022101–022109 (2006)

    Article  ADS  Google Scholar 

  20. Kibble, T.W.: Relativistic models of nonlinear quantum Mechanics. Comm. Math. Phys. 64, 73–82 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kibble, T.W., Randjbar-Daemi, S.: Non-linear coupling of quantum theory. J. Phys. A 13, 141–148 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. Elze, H.-T.: Is there relativistic nonlinear generalization of quantum mechanics. J. Phys. Conf. Ser. 67, 012016–012025 (2007)

    Article  Google Scholar 

  23. Weissman, P.R., Johnson, T.V.: Encyclopedia of the Solar System. Academic Press, New York (2007)

    Google Scholar 

  24. Fayyazuddin, R.: Quantum Mechanics. W. S. Singapore (1990)

  25. Cheng, T., Li, L.: Gauge Theory of Elementary Particles. Claredon, Oxford (1984)

    Google Scholar 

  26. Gisin, N.: Nonlocality and nonlinear quantum mechanics. Phys. Lett. A 143, 1–7 (1990)

    Article  ADS  Google Scholar 

  27. Svetlichny, G.: Quantum formalism with state collapse. Found. Phys. 28, 131–145 (1998)

    Article  MathSciNet  Google Scholar 

  28. Czachor, M., Doebner, H.-D.: Correlation experiments in nonlinear quantum mechanics. Phys. Lett. A 301, 139–146 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Diaz, P., Das, S., Walton, M.: Bilocal theory and gravity. Int. J. Mod. Phys D 27, 1850090–1850099 (2018)

    Article  ADS  MATH  Google Scholar 

  30. van Raamsdonk, M.: Bielding space-time with quantum entanglement. Gen. Rel. Grav. 42, 2323–2329 (2010)

    Article  ADS  MATH  Google Scholar 

  31. Moraes, T., et al.: Spontaneous ultra-weak light emission from wheat seedlings. Naturwiss 99, 465–472 (2012)

    Article  ADS  Google Scholar 

  32. Kollerstrom, N., Staudenmaier, G.: Evidence for lunar-sidereal rhythms in crop yield. Biol. Agric. Hortic. 19, 247–259 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mayburov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayburov, S. Nuclear Decay Parameter Oscillations as Possible Signal of Quantum-Mechanical Nonlinearity. Int J Theor Phys 60, 630–639 (2021). https://doi.org/10.1007/s10773-019-04237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04237-x

Keywords

Navigation