Skip to main content
Log in

Robustness of Measurement–Induced Correlations Under Decoherence Effect

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this article, we study the dynamics of quantum correlation measures such as entanglement and measurement–induced nonlocality (MIN). Starting from an arbitrary Bell-diagonal mixed state under Markovian local noise such as bit-phase flip, depolarizing and generalized amplitude damping channel, we provide the decays of the entanglement measured by concurrence and quantum correlation captured by different forms of MIN (trace distance, Hilbert–Schmidt norm and relative entropy) as a function of the decoherence parameters. The effect of local noises on the dynamical behaviors of quantum correlation is also observed. We show the existence of specific and important features of MIN such as revival, noise robustness and sudden change with respect to decoherence parameter. It is observed that all the noises cause sudden death of entanglement for partially entangled states. Further, we show the existence of separable quantum states with non-zero quantum correlations in terms of MIN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baumgratz, T., Cramer, M., Plenio, M. B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  2. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  3. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  4. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  5. Bell, J. S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  6. Ollivier, H., Zurek, W. H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  7. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  8. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  9. Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bouwmeester, D., Pan, J. -W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  11. Bennett, C. H., Wiesner, S. J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ekert, A. K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Shor, P. W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(R), R2493 (1995)

    Article  ADS  Google Scholar 

  14. Werner, R. F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  15. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: Analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  16. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  17. Hu, M. -L., Fan, H.: Dynamics of entropic measurement-induced nonlocality in structured reservoirs. Ann. Phys. 2343, 327 (2012)

    MATH  Google Scholar 

  18. Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)

    Article  ADS  Google Scholar 

  19. Muthuganesan, R., Sankaranarayanan, R.: Fidelity based measurement induced nonlocality. Phys. Lett. A 381, 3028 (2017)

    Article  ADS  Google Scholar 

  20. Li, L., Wang, Q. -W., Shen, S. -Q., Li, M.: Measurement-induced nonlocality based on Wigner-Yanase skew information. EPL 114, 10007 (2016)

    Article  ADS  Google Scholar 

  21. Hu, M. -L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  22. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  23. Hu, M. -L., Hu, X., Wang, J., Peng, Y., Zhang, Y. -R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762-764, 1–100 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  25. Yu, T., Eberly, J. H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hill, S., Wootters, W. K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  27. Hu, M. -L., Fan. H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors thank the reviewer for his critical comments to improve the contents of the paper. SB and RR thank the Council of Scientific and Industrial Research (CSIR), Government of India for the financial support under Grant No. 03(1456)/19/EMR-II. RR also wishes to thank DAE-NBHM for the financial support under the scheme 02011/3/20/2020-R&D-II. RM acknowledges the financial support from the Council of Scientific and Industrial Research (CSIR), Government of India, under Grant No. 03(1444)/18/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Radha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, S., Muthuganesan, R. & Radha, R. Robustness of Measurement–Induced Correlations Under Decoherence Effect. Int J Theor Phys 60, 2145–2155 (2021). https://doi.org/10.1007/s10773-021-04830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04830-z

Keywords

Navigation