Skip to main content
Log in

Exact Bloch States of a Spin-orbit Coupled Bose-Einstein Condensate in an Optical Lattice

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the exact Bloch states of a spin-orbit (SO) coupled Bose-Einstein condensate (BEC) held in an optical lattice. Under a natural condition of the symmetry between the two species, we obtain two different forms of exact solutions corresponding to different existing conditions. Then, we analytically demonstrate that (a) the average atomic number per well can enlarge the region area (consisting of instability and stability parameter regions) existing exact solutions; (b) the sizes of the instability and stability parameter regions exhibit opposite variation trend with the increase in Rabi coupling strength, and the results of different solutions are just opposite. Besides, we find that spin-orbit coupling (SOC) results in the generation of spin-motion entanglement for the Bloch states, the SOC strength and lattice depth can influence the population transfer between two BEC components, and varying the SOC strength and lattice depth can also reveal the dynamical superfluid-insulator transition from the superfluid state to the critical insulating state. These results present a feasible scheme to manipulate the stable superfluid currents, which will be useful to control quantum transport of BEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D.: Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004)

    Article  ADS  Google Scholar 

  2. König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.-L., Zhang, S.-C.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007)

    Article  ADS  Google Scholar 

  3. Kane, C.L., Mele, E.J.: Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  4. Bernevig, B.A., Hughes, T.L., Zhang, S.-C.: Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)

    Article  ADS  Google Scholar 

  5. Lin, Y.J., Jimenez-Garcia, K., Spielman, I.B.: Spin-orbit-coupled Bose-Einstein condensates. Nature (London) 471, 83–86 (2011)

    Article  ADS  Google Scholar 

  6. Zhang, J.Y., Ji, S.C., Chen, Z., Zhang, L., Du, Z.D., Yan, B., Pan, G.S., Zhao, B., Deng, Y.J., Zhai, H., Chen, S., Pan, J.W.: Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate. Phys. Rev. Lett. 109, 115301 (2012)

    Article  ADS  Google Scholar 

  7. Wu, Z., Zhang, L., Sun, W., Xu, X.T., Wang, B.Z., Ji, S.C., Deng, Y.J., Chen, S., Liu, X.J., Pan, J.W.: Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science 354, 83–88 (2016)

    Article  ADS  Google Scholar 

  8. Huang, L.H., Meng, Z.M., Wang, P.J., Peng, P., Zhang, S.L., Chen, L.C., Li, D.H., Zhou, Q., Zhang, J.: Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases. Nat. Phys. 12, 540–544 (2016)

    Article  Google Scholar 

  9. Fu, Z., Wang, P., Chai, S., Huang, L., Zhang, J.: Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers. Phys. Rev. A 84, 043609 (2011)

    Article  ADS  Google Scholar 

  10. Zhang, Y.P., Mao, L., Zhang, C.W.: Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett. 108, 035302 (2012)

    Article  ADS  Google Scholar 

  11. Hu, F.Q., Wang, J.J., Yu, Z.F., Zhang, A.X., Xue, J.K.: Collective dynamics of a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. E 93, 022214 (2016)

    Article  ADS  Google Scholar 

  12. Salasnich, L., Malomed, B.A.: Localized modes in dense repulsive and attractive Bose-Einstein condensates with spin-orbit and Rabi couplings. Phys. Rev. A 87, 063625 (2013)

    Article  ADS  Google Scholar 

  13. Cheng, Y.S., Tang, G.H., Adhikari, S.K.: Localization of a spin-orbit-coupled Bose-Einstein condensate in a bichromatic optical lattice. Phys. Rev. A 89, 063602 (2014)

    Article  ADS  Google Scholar 

  14. Sun, F.X., Zhang, W., He, Q.Y., Gong, Q.H.: Entanglement and dynamical phase transition in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. A 97, 012307 (2018)

    Article  ADS  Google Scholar 

  15. Zhang, D.W., Fu, L.B., Wang, Z.D., Zhu, S.L.: Josephson dynamics of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential. Phys. Rev. A 85, 043609 (2012)

    Article  ADS  Google Scholar 

  16. Garcia-March, M.A., Mazzarella, G., Dell’ Anna, L., Juliá-Díaz, B., Salasnich, L., Polls, A.: Josephson physics of spin-orbit-coupled elongated Bose-Einstein condensates. Phys. Rev. A 89, 063607 (2014)

    Article  ADS  Google Scholar 

  17. Luo, X., Yang, B., Cui, J., Guo, Y., Li, L., Hu, Q.: Dynamics of spin-orbit-coupled cold atomic gases in a Floquet lattice with an impurity. J. Phys. B: At. Mol. Opt. Phys. 52, 085301 (2019)

    Article  ADS  Google Scholar 

  18. Kong, C., Luo, X., Chen, H., Luo, Y., Hai, W.: Phase-controlled and chaos-assisted or-suppressed quantum entanglement for a spin-orbit coupled Bose-Einstein condensate. Chaos 29, 103148 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zhao, Q.: Spin-Orbit Coupling Induced Phase Separation in Spin-1 Condensate with optical lattice. Int. J. Theor. Phys. 58, 2282–2292 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y., Pitaevskii, L.P., Stringari, S.: Quantum tricriticality and phase transitions in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett. 108, 225301 (2012)

    Article  ADS  Google Scholar 

  21. Zhang, D.W., Chen, J.P., Shan, C.J., Wang, Z.D., Zhu, S.L.: Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin-orbit coupling in an optical lattice. Phys. Rev. A 88, 013612 (2013)

    Article  ADS  Google Scholar 

  22. Zhu, Q., Zhang, C., Wu, B.: Exotic superfluidity in spin-orbit coupled Bose-Einstein condensates. Europhys. Lett. 100, 50003 (2012)

    Article  ADS  Google Scholar 

  23. Zhou, X.F., Zhou, J., Wu, C.: Vortex structures of rotating spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A 84, 063624 (2011)

    Article  ADS  Google Scholar 

  24. Xu, Y., Zhang, Y., Wu, B.: Bright solitons in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A 87, 013614 (2013)

    Article  ADS  Google Scholar 

  25. Kartashov, Y.V., Konotop, V.V., Abdullaev, F.K.: Gap solitons in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. Lett. 111, 060402 (2013)

    Article  ADS  Google Scholar 

  26. Lobanov, V.E., Kartashov, Y.V., Konotop, V.V.: Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose-Einstein condensates. Phys. Rev. Lett. 112, 180403 (2014)

    Article  ADS  Google Scholar 

  27. Cai, Z., Zhou, X., Wu, C.: Magnetic phases of bosons with synthetic spin-orbit coupling in optical lattices. Phys. Rev. A 85(R), 061605 (2012)

    Article  ADS  Google Scholar 

  28. Piraud, M., Cai, Z., McCulloch, I.P., Schollwöck, U.: Quantum magnetism of bosons with synthetic gauge fields in one-dimensional optical lattices: A density-matrix renormalization-group study. Phys. Rev. A 89, 063618 (2014)

    Article  ADS  Google Scholar 

  29. Larson, J., Martikainen, J.-P., Collin, A., Sjöqvist, E.: Spin-orbit-coupled Bose-Einstein condensate in a tilted optical lattice. Phys. Rev. A 82, 043620 (2010)

    Article  ADS  Google Scholar 

  30. Edmonds, M.J., Otterbach, J., Unanyan, R.G., Fleischhauer, M., Titov, M., Öhberg, P.: From Anderson to anomalous localization in cold atomic gases with effective spin-orbit coupling. New J. Phys. 14, 073056 (2012)

    Article  ADS  Google Scholar 

  31. Zhou, L., Pu, H., Zhang, W.: Anderson localization of cold atomic gases with effective spin-orbit interaction in a quasiperiodic optical lattice. Phys. Rev. A 87, 023625 (2013)

    Article  ADS  Google Scholar 

  32. Kong, C., Chen, H., Li, C., Hai, W.: Controlling chaotic spin-motion entanglement of ultracold atoms via spin-orbit coupling. Chaos 28, 023115 (2018)

    Article  ADS  MATH  Google Scholar 

  33. Abdullaev, F.K., Kraenkel, R.A.: Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential. Phys. Rev. A 62, 023613 (2000)

    Article  ADS  Google Scholar 

  34. Coullet, P., Vandenberghe, N.: Chaotic self-trapping of a weakly irreversible double Bose condensate. Phys. Rev. E 64(R), 025202 (2001)

    Article  ADS  Google Scholar 

  35. Hai, W., Lee, C., Chong, G., Shi, L.: Chaotic probability density in two periodically driven and weakly coupled Bose-Einstein condensates. Phys. Rev. E 66, 026202 (2002)

    Article  ADS  Google Scholar 

  36. Hai, W., Zhu, Q., Rong, S.: Chaotic shock waves of a Bose-Einstein condensate. Phys. Rev. A 79, 023603 (2009)

    Article  ADS  Google Scholar 

  37. Smerzi, A., Fantoni, S., Giovanazzi, S., Shenoy, S.R.: Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  38. Lee, C., Hai, W., Shi, L., Zhu, X., Gao, K.: Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates. Phys. Rev. A 64, 053604 (2001)

    Article  ADS  Google Scholar 

  39. Eguíluz, V.M., Hernández-García, E., Piro, O., Balle, S.: Frozen spatial chaos induced by boundaries. Phys. Rev. E 60, 6571 (1999)

    Article  ADS  Google Scholar 

  40. Chong, G., Hai, W., Xie, Q.: Spatial chaos of trapped Bose-Einstein condensate in one-dimensional weak optical lattice potential. Chaos 14, 217 (2004)

    Article  ADS  Google Scholar 

  41. Chong, G., Hai, W., Xie, Q.: Controlling chaos in a weakly coupled array of Bose-Einstein condensates. Phys. Rev. E 71, 016202 (2005)

    Article  ADS  Google Scholar 

  42. Martin, A.D., Adams, C.S., Gardiner, S.A.: Bright matter-wave soliton collisions in a harmonic trap: Regular and chaotic dynamics. Phys. Rev. Lett. 98, 020402 (2007)

    Article  ADS  Google Scholar 

  43. Chacó, n, R., Bote, D., Carretero-González, R.: Controlling chaos of a Bose-Einstein condensate loaded into a moving optical Fourier-synthesized lattice. Phys. Rev. E 78, 036215 (2008)

    Article  ADS  Google Scholar 

  44. Zhu, Q., Hai, W., Rong, S.: Transition probability from matter-wave soliton to chaos. Phys. Rev. E 80, 016203 (2009)

    Article  ADS  Google Scholar 

  45. Rong, S., Hai, W., Xie, Q., Zhu, Q.: Chaos enhancing tunneling in a coupled Bose-Einstein condensate with a double driving. Chaos 19, 033129 (2009)

    Article  ADS  Google Scholar 

  46. Liu, Q., Chen, H., Hai, W.: Chaos-assisted localization and delocalization of a particle in a driven optical lattice. Soliton. Fract. 80, 122 (2019)

    MATH  Google Scholar 

  47. Zhou, Z., Hai, W., Deng, Y., Xie, Q.: Chaotic transport of a matter-wave soliton in a biperiodically driven optical superlattice. Chaos. Soliton. Fract. 45, 1423 (2012)

    Article  ADS  Google Scholar 

  48. Abdullaev, F.K., Galimzyanov, R.: The dynamics of bright matter wave solitons in a quasi one-dimensional Bose-Einstein condensate with a rapidly varying trap. J. Phys. B 36, 1099 (2003)

    Article  ADS  Google Scholar 

  49. Baizakov, B.B., Malomed, B.A., Salerno, M.: Matter-wave solitons in radially periodic potentials. Phys. Rev. E 74, 066615 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  50. Mayteevarunyoo, T., Malomed, B.A., Krairiksh, M.: Stability limits for two-dimensional matter-wave solitons in a time-modulated quasi-one-dimensional optical lattice. Phys. Rev. A 76, 053612 (2007)

    Article  ADS  Google Scholar 

  51. Lee, C., Brand, J.: Enhanced quantum reflection of matter-wave solitons. Europhys. Lett. 73, 321 (2006)

    Article  ADS  Google Scholar 

  52. Zhao, Q., Shen, H., Liu, H.Y.: Formation of information entropy in spinor Bose-Einstein condensates. Int. J. Theor. Phys. 58, 1262–1268 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N.: Bose-Einstein condensates in standing waves: The cubic nonlinear Schrödinger equation with a periodic potential. Phys. Rev. Lett. 86, 1402 (2001)

    Article  ADS  Google Scholar 

  54. Deconinck, B., Kutz, J.N., Patterson, M.S., Warner, B.W.: Dynamics of periodic multi-component Bose-Einstein condensates. J. Phys. A: Math. Gen. 36, 5431–5447 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Hai, W., Li, Y., Xia, B., Luo, X.: Exact solutions of a two-component BEC interacting with a lattice potential. Europhys. Lett 71, 280–34 (2005)

    Article  MathSciNet  Google Scholar 

  56. Deng, H., Hai, W., Zhu, Q.: Exact Floquet states of a two-component Bose-Einstein condensate induced by a laser standing wave. J. Phys. A: Math. Gen. 39, 15061 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Deconinck, B., Frigyik, B.A., Kutz, J.N.: Stability of exact solutions of the defocusing nonlinear Schrödinger equation with periodic potential in two dimensions. Phys. Lett. A 283, 177–184 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Hai, W., Chong, G., Xie, Q., Lu, J.: Optical operation of ultracold atomic quasi-clusters. Eur. Phys. J. D 28, 267–272 (2004)

    Article  ADS  Google Scholar 

  59. Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N., Promislow, K.: Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E 63, 036612 (2001)

    Article  ADS  Google Scholar 

  60. Hai, W., Lee, C., Fang, X., Gao, K.: Exactly formulated Bose-Einstein condensates in optical lattices. Physica. A 335, 445 (2004)

    Article  ADS  Google Scholar 

  61. Liu, S., Xiong, H., Xu, Z., Huang, G.: Interference patterns of Bose-condensed gases in a two-dimensional optical lattice. J. Phys. B: At. Mol. Opt. Phys. 36, 2083 (2003)

    Article  ADS  Google Scholar 

  62. Wei, Y., Kong, C., Hai, W.: Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice. Chin. Phys. B 28, 056701 (2019)

    Article  ADS  Google Scholar 

  63. Andrews, M.R., Townsend, C.G., Miesner, H.J., Durfee, D.S., Kurn, D.M., Ketteerle, W.: Observation of interference between two Bose condensates. Science 275, 637 (1997)

    Article  Google Scholar 

  64. Wu, Y., Yang, X.: Output rate of atom lasers in a Raman-type output-coupling scheme. Phys. Rev. A 62, 013603 (2000)

    Article  ADS  Google Scholar 

  65. Stenger, J., Inouye, S., Stamper-Kurn, D.M., Miesner, H.-J., Chikkatur, A.P., Ketterle, W.: Spin domains in ground-state Bose-Einstein condensates. Nature 396, 345–348 (1998)

    Article  ADS  Google Scholar 

  66. Salerno, M., Abdullaev, F.K., Gammal, A., Tomio, L.: Tunable spin-orbit-coupled Bose-Einstein condensates in deep optical lattices. Phys. Rev. A 043602, 94 (2016)

    Google Scholar 

  67. Blatt, S., Nicholson, T.L., Bloom, B.J., Williams, J.R., Thomsen, J.W., Julienne, P.S., Ye, J.: Measurement of optical Feshbach resonances in an ideal gas. Phys. Rev. Lett. 107, 073202 (2011)

    Article  ADS  Google Scholar 

  68. Inouye, S., Andrews, M.R., Stengeretal, J.: Observation of Feshbach resonances in a Bose-Einstein condensate. Nature (London) 392, 151–154 (1998)

    Article  ADS  Google Scholar 

  69. Salasnich, L., Malomed, B.A.: Vector solitons in nearly one-dimensional Bose-Einstein condensates. Phys. Rev. A 74, 053610 (2006)

    Article  ADS  Google Scholar 

  70. Arlinghaus, S., Holthaus, M.: Controlled wave-packet manipulation with driven optical lattices. Phys. Rev. A 84, 063617 (2011)

    Article  ADS  Google Scholar 

  71. Deconinck, B., Kutz, J.N., Patterson, M.S., Warner, B.W.: Dynamics of periodic multi-component Bose-Einstein condensates. J. Phys. A: Math. Gen. 36, 5431 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Kostov, N.A., Enol’skii, V.Z., Gerdjikov, V.S., Konotop, V.V., Salerno, M.: Two-component Bose-Einstein condensates in periodic potential. Phys. Rev. E 70, 056617 (2004)

    Article  ADS  MATH  Google Scholar 

  73. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  74. Mizrahi, J., Senko, C., Neyenhuis, B., Johnson, K.G., Campbell, W.C., Conover, C.W.S., Monroe, C.: Ultrafast spin-motion entanglement and interferometry with a single atom. Phys. Rev. Lett. 110, 203001 (2013)

    Article  ADS  Google Scholar 

  75. Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A Schrödinger cat superposition state of an atom. Science 272, 1131–1136 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of Hunan Provincial Education Office under Grant No. 20C1711,17B244, 19A459, the National Natural Science Foundation of China under Grant No. 11705155, Chenzhou science and technology project jsyf2017005, zdyf2020159, Science Research Project of Xiangnan University under Grant No.2016XJ32, Innovation and Entrepreneurship Training Program for College Students in Hunan Province([2020]191), and Research project of teaching reform in universities of Hunan province([2018]436). Chao Kong feels deeply indebted to Ling Liu for her support and encouragement during the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiMing Deng.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, C., Tang, Z., Lu, N. et al. Exact Bloch States of a Spin-orbit Coupled Bose-Einstein Condensate in an Optical Lattice. Int J Theor Phys 60, 3161–3176 (2021). https://doi.org/10.1007/s10773-021-04863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04863-4

Keywords

Navigation