Skip to main content
Log in

On the Search for High-Rate Quasi-Orthogonal Space–Time Block Code

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

A Quasi-Orthogonal Space–Time Block Code (QO-STBC) is attractive because it achieves higher code rate than orthogonal STBC and lower decoding complexity than non-orthogonal STBC. In this paper, we first derive the algebraic structure of QO-STBC, then we apply it in a novel graph-based search algorithm to find high-rate QO-STBCs with code rates greater than 1. From the four-antenna codes found using this approach, it is found that the maximum code rate is limited to 5/4 with symbolwise diversity level of four, and 4 with symbolwise diversity level of two. The maximum likelihood decoding of these high-rate QO-STBCs can be performed on two separate sub-groups of symbols. The rate-5/4 codes are the first known QO-STBCs with code rate greater 1 that has full symbolwise diversity level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Tarokh V., Jafarkhani H., Calderbank A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45:1456–1467

    Article  MATH  MathSciNet  Google Scholar 

  2. Sandhu S., Paulraj A. (2000). Space-time block codes: a capacity perspective. IEEE Communications Letters 4:384-386

    Article  Google Scholar 

  3. Jafarkhani H. (2001). A quasi-orthogonal space-time block code. IEEE Transactions on Communications 49:1–4

    Article  MATH  Google Scholar 

  4. Papadias C. B., Foschini G. J. (2003). Capacity-approaching space-time codes for systems employing four transmitter antennas. IEEE Transactions on Information Theory 49:726–733

    Article  MATH  MathSciNet  Google Scholar 

  5. O. Tirkkonen, A. Boariu, and A. Hottinen, Minimal non-orthogonality rate 1 space-time block code for 3+ tx antennas,IEEE ISSSTA, Vol. 2, pp. 429–432, 2002

    Google Scholar 

  6. C. Yuen, Y. L. Guan, and T. T. Tjhung, Quasi-orthogonal STBC with minimum decoding complexity, IEEE Trans. Wireless Comms. Vol.4, pp. 2089–2094, 2005

    Article  Google Scholar 

  7. C. Yuen, Y. L. Guan, and T. T. Tjhung, Algebraic relationship between quasi-orthogonal STBC with minimum decoding complexity and amicable orthogonal design, accepted by IEEE ICC, 2006.

  8. Hassibi B., Hochwald B. M. (2002). High-rate codes that are linear in space and time. IEEE Transactions on Information Theory 48:1804–1824

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Yuen, Y. L. Guan, and T. T. Tjhung, Decoding of quasi-orthogonal space-time block code with noise whitening, IEEE PIMRC, Vol. 3, pp. 2166–2170, 2003

    Google Scholar 

  10. O. Tirkkonen and A. Hottinen, Square-matrix embeddable space-time block codes for complex signal constellations, IEEE Transactions on Information Theory 48: 384–395, 2002

    Article  MATH  MathSciNet  Google Scholar 

  11. O. Tirkkonen, Maximal symbolwise diversity in non-orthogonal space-time block codes, IEEE ISIT, pp. 197, 2001

  12. U. Schendel, Sparse Matrices, Numerical Aspects with Applications for Scientists and Engineers, John Wiley & Sons, 1989

  13. S. Sahni, Data Structures, Algorithms, and Applications in C++, McGraw-Hill, 1998

  14. A. Hottinen, O. Tirkkonen, and X. Wichman, Multiantenna Techniques for 3G and Beyond, John Wiley & Sons, 2003

  15. C. Yuen, Y. L. Guan, and T. T. Tjhung, New high-rate STBC with good dispersion property, IEEE PIMRC, 2005

Download references

ACKNOWLEDGMENTS

The authors would like to thank Hwor Shen Chong and Chee Muah Lim from Nanyang Technological University (Singapore) in assisting in part of this work. The authors would also like to thank the editor Dr Olav Tirkkonen and the anonymous reviewer for many constructive suggestions that help improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chau Yuen.

Additional information

This is the work done when Chau Yuen was with the Nanyang Technological University

Appendices

Appendix A: Depth First Search (DFS) Algorithm

 

Table 2

Appendix B: Modified Depth First Search (MDFS) Algorithm

 

Input: Graph, number of nodes in graph (N), number of groups required (G)

Output: a tree T with every branch as a valid solution

Begin

  Pick a node n, \(n \leq N\) as starting point;

  Assign node n to Group 1, i.e. g(n)=1;

  Assign node n as the root of tree T, i.e. \(T = T \cup \{n\}\);

  MDFS(n, T, g);

End

Procedure MDFS(n, T, g)

Begin

  for (v ∈{neighbor of n})

   if ( \(v \not\in \{\hbox{ancestor of } n\}\))

    Assume that node v is in Group p

    where p=g(n)+1 if \(g(n)+1 \leq G\),

       = 1 if \(g(n)+1 > G\);

    if (v possesses a link with all ancestors of n with

      different groups, i.e. g(ancestor of n) \(\ne p\))

       Assign node v to Group p, i.e. g(v)=p;

       Add node v to the tree T with n as parent, i.e. T=T ∪ {v};

       MDFS(v, T, g);

    end

    end

  end

End

Appendix C: Matrices Found by MDFS Using G=2, T=N t=4, Rank=4, Weight=2

Group 1

$$ \begin{array}{*{20}c} {{\mathbf{A}}_1 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & { - 1} \\ \end{array}} \right],} \quad & {{\mathbf{A}}_2 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & { - 1} & { - 1} \\ 0 & 0 & { - 1} & 1 \\ \end{array}} \right],}\quad & {{\mathbf{A}}_3 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & j & j \\ 0 & 0 & { - j} & j \\ \end{array}} \right],} \\ {{\mathbf{A}}_4 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & j & { - j} \\ 0 & 0 & j & j \\ \end{array}} \right],}\quad & {{\mathbf{A}}_5 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & { - j} & j \\ 0 & 0 & j & j \\ \end{array}} \right],}\quad & {{\mathbf{A}}_6 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & { - j} & { - j} \\ 0 & 0 & j & j \\ \end{array}} \right],} \\ {{\mathbf{A}}_7 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & { - j} & j \\ 0 & 0 & { - j} & { - j} \\ \end{array}} \right]}\quad & {{\mathbf{A}}_8 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & j & { - j} \\ 0 & 0 & { - j} & { - j} \\ \end{array}} \right].} & {} \\ \end{array} $$

Group 2

$$ \begin{array}{*{20}c} {{\mathbf{A}}_9 = \left[ {\begin{array}{*{20}c} { - 1} & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & { - 1} & 1 \\ 0 & 0 & 1 & 1 \\ \end{array}} \right],}\quad & {{\mathbf{A}}_{10} = \left[ {\begin{array}{*{20}c} { - 1} & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & { - 1} \\ 0 & 0 & { - 1} & { - 1} \\ \end{array}} \right],}\quad & {{\mathbf{A}}_{11} = \left[ {\begin{array}{*{20}c} j & j & 0 & 0 \\ j & { - j} & 0 & 0 \\ 0 & 0 & {-1} & 1 \\ 0 & 0 & 1 & 1 \\ \end{array}} \right],} \\ {{\mathbf{A}}_{12} = \left[ {\begin{array}{*{20}c} j & j & 0 & 0 \\ { - j} & j & 0 & 0 \\ 0 & 0 & { - 1} & 1 \\ 0 & 0 & 1 & 1 \\ \end{array}} \right],}\quad & {{\mathbf{A}}_{13} = \left[ {\begin{array}{*{20}c} j & { - j} & 0 & 0 \\ j & j & 0 & 0 \\ 0 & 0 & { - 1} & 1 \\ 0 & 0 & 1 & 1 \\ \end{array}} \right],}\quad & {{\mathbf{A}}_{14} = \left[ {\begin{array}{*{20}c} j & j & 0 & 0 \\ j & { - j} & 0 & 0 \\ 0 & 0 & 1 & { - 1} \\ 0 & 0 & { - 1} & { - 1} \\ \end{array}} \right],} \\ {{\mathbf{A}}_{15} = \left[ {\begin{array}{*{20}c} j & j & 0 & 0 \\ { - j} & j & 0 & 0 \\ 0 & 0 & 1 & { - 1} \\ 0 & 0 & { - 1} & { - 1} \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{16} = \left[ {\begin{array}{*{20}c} j & { - j} & 0 & 0 \\ j & j & 0 & 0 \\ 0 & 0 & 1 & { - 1} \\ 0 & 0 & { - 1} & { - 1} \\ \end{array}} \right].} & {} \\ \end{array} $$

Appendix D: Matrices Found by MDFS Using G=2, T=N t=4, Rank=2, Weight=2

Group 1

$$ \begin{array}{*{20}c} {{\mathbf{A}}_1 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_2 = \left[ {\begin{array}{*{20}c} j & j & 0 & 0 \\ j & j & 0 & 0 \\ 0 & 0 & j & j \\ 0 & 0 & j & j \\ \end{array}} \right]}\quad & {{\mathbf{A}}_3 = \left[ {\begin{array}{*{20}c} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_4 = \left[ {\begin{array}{*{20}c} 0 & 0 & j & j \\ 0 & 0 & j & j \\ j & j & 0 & 0 \\ j & j & 0 & 0 \\ \end{array}} \right]} \\ {{\mathbf{A}}_5 = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & { - 1} & { - 1} \\ 0 & 0 & { - 1} & { - 1} \\ \end{array}} \right]}\quad & {{\mathbf{A}}_6 = \left[ {\begin{array}{*{20}c} j & j & 0 & 0 \\ j & j & 0 & 0 \\ 0 & 0 & { - j} & { - j} \\ 0 & 0 & { - j} & { - j} \\ \end{array}} \right]} \quad & {{\mathbf{A}}_7 = \left[ {\begin{array}{*{20}c} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ { - 1} & { - 1} & 0 & 0 \\ { - 1} & { - 1} & 0 & 0 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_8 = \left[ {\begin{array}{*{20}c} 0 & 0 & j & j \\ 0 & 0 & j & j \\ { - j} & { - j} & 0 & 0 \\ { - j} & { - j} & 0 & 0 \\ \end{array}} \right]} \\ {{\mathbf{A}}_9 = \left[ {\begin{array}{*{20}c} { - 1} & 1 & 0 & 0 \\ { - 1} & 1 & 0 & 0 \\ 0 & 0 & { - 1} & 1 \\ 0 & 0 & { - 1} & 1 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{10} = \left[ {\begin{array}{*{20}c} { - j} & j & 0 & 0 \\ { - j} & j & 0 & 0 \\ 0 & 0 & { - j} & j \\ 0 & 0 & { - j} & j \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{11} = \left[ {\begin{array}{*{20}c} 0 & 0 & { - 1} & 1 \\ 0 & 0 & { - 1} & 1 \\ 1 & { - 1} & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{12} = \left[ {\begin{array}{*{20}c} 0 & 0 & j & { - j} \\ 0 & 0 & j & { - j} \\ { - j} & j & 0 & 0 \\ { - j} & j & 0 & 0 \\ \end{array}} \right]} \\ {{\mathbf{A}}_{13} = \left[ {\begin{array}{*{20}c} 1 & { - 1} & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & { - 1} & 1 \\ 0 & 0 & { - 1} & 1 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{14} = \left[ {\begin{array}{*{20}c} j & { - j} & 0 & 0 \\ j & { - j} & 0 & 0 \\ 0 & 0 & { - j} & j \\ 0 & 0 & { - j} & j \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{15} = \left[ {\begin{array}{*{20}c} 0 & 0 & 1 & { - 1} \\ 0 & 0 & 1 & { - 1} \\ 1 & { - 1} & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ \end{array}} \right]} \quad & {{\mathbf{A}}_{16} = \left[ {\begin{array}{*{20}c} 0 & 0 & j & { - j} \\ 0 & 0 & j & { - j} \\ j & { - j} & 0 & 0 \\ j & { - j} & 0 & 0 \\ \end{array}} \right]} \\ \end{array} $$

Group 2

$$ \begin{array}{*{20}c} {{\mathbf{A}}_{17} = \left[ {\begin{array}{*{20}c} { - 1} & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ 0 & 0 & { - 1} & 1 \\ 0 & 0 & 1 & { - 1} \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{18} = \left[ {\begin{array}{*{20}c} { - j} & j & 0 & 0 \\ j & { - j} & 0 & 0 \\ 0 & 0 & { - j} & j \\ 0 & 0 & j & { - j} \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{19} = \left[ {\begin{array}{*{20}c} 0 & 0 & 1 & { - 1} \\ 0 & 0 & { - 1} & 1 \\ { - 1} & 1 & 0 & 0 \\ 1 & { - 1} & 0 & 0 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{20} = \left[ {\begin{array}{*{20}c} 0 & 0 & j & { - j} \\ 0 & 0 & { - j} & j \\ { - j} & j & 0 & 0 \\ j & { - j} & 0 & 0 \\ \end{array}} \right]} \\ {{\mathbf{A}}_{21} = \left[ {\begin{array}{*{20}c} { - 1} & { - 1} & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & { - 1} & { - 1} \\ 0 & 0 & 1 & 1 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{22} = \left[ {\begin{array}{*{20}c} { - j} & { - j} & 0 & 0 \\ j & j & 0 & 0 \\ 0 & 0 & { - j} & { - j} \\ 0 & 0 & j & j \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{23} = \left[ {\begin{array}{*{20}c} 0 & 0 & { - 1} & { - 1} \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ { - 1} & { - 1} & 0 & 0 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{24} = \left[ {\begin{array}{*{20}c} 0 & 0 & { - j} & { - j} \\ 0 & 0 & j & j \\ j & j & 0 & 0 \\ { - j} & { - j} & 0 & 0 \\ \end{array}} \right]} \\ {{\mathbf{A}}_{25} = \left[ {\begin{array}{*{20}c} 1 & { - 1} & 0 & 0 \\ { - 1} & 1 & 0 & 0 \\ 0 & 0 & { - 1} & 1 \\ 0 & 0 & 1 & { - 1} \\ \end{array}} \right]} \quad & {{\mathbf{A}}_{26} = \left[ {\begin{array}{*{20}c} j & { - j} & 0 & 0 \\ { - j} & j & 0 & 0 \\ 0 & 0 & { - j} & j \\ 0 & 0 & j & { - j} \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{27} = \left[ {\begin{array}{*{20}c} 0 & 0 & 1 & { - 1} \\ 0 & 0 & { - 1} & 1 \\ 1 & { - 1} & 0 & 0 \\ { - 1} & 1 & 0 & 0 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{28} = \left[ {\begin{array}{*{20}c} 0 & 0 & j & { - j} \\ 0 & 0 & { - j} & j \\ j & { - j} & 0 & 0 \\ { - j} & j & 0 & 0 \\ \end{array}} \right]} \\ {{\mathbf{A}}_{25} = \left[ {\begin{array}{*{20}c} 1 & 1 & 0 & 0 \\ { - 1} & { - 1} & 0 & 0 \\ 0 & 0 & { - 1} & { - 1} \\ 0 & 0 & 1 & 1 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{26} = \left[ {\begin{array}{*{20}c} j & j & 0 & 0 \\ { - j} & { - j} & 0 & 0 \\ 0 & 0 & { - j} & { - j} \\ 0 & 0 & j & j \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{27} = \left[ {\begin{array}{*{20}c} 0 & 0 & 1 & 1 \\ 0 & 0 & { - 1} & { - 1} \\ 1 & 1 & 0 & 0 \\ { - 1} & { - 1} & 0 & 0 \\ \end{array}} \right]}\quad & {{\mathbf{A}}_{28} = \left[ {\begin{array}{*{20}c} 0 & 0 & j & j \\ 0 & 0 & { - j} & { - j} \\ j & j & 0 & 0 \\ { - j} & { - j} & 0 & 0 \\ \end{array}} \right]} \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuen, C., Guan, Y.L. & Tjhung, T.T. On the Search for High-Rate Quasi-Orthogonal Space–Time Block Code. Int J Wireless Inf Networks 13, 329–340 (2006). https://doi.org/10.1007/s10776-006-0033-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-006-0033-2

Keywords

Navigation