Skip to main content

Advertisement

Log in

Potential role of nitric oxide synthase isoforms in pathophysiology of neuropathic pain

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Neuropathic pain triggers a cascade of events in the sensory neurons. It is the main complication of diabetes after cardiovascular disease. Nitric oxide (NO) produced from nitric oxide synthases (NOS) is an important signaling molecule which is crucial for many physiological processes such as synaptic plasticity, neuronal survival, vasodilation, vascular homeostasis, immune regulation. Overproduction of NO due to changes in NOS isoforms level involves pathological processes such as neurotoxicity, septic shock and neuropathic pain. All three isoforms of NOS as well as their end product, NO have modulatory effect on neuropathic pain. Overactivation of the N-Methyl-d-Aspartate receptor and peroxynitrite formation results in high levels of neuronal NOS (nNOS) and endothelial NOS (eNOS) which suggest that nNOS and eNOS are critical for pain hypersensitivity. Inducible NOS induced in glia by inflammation due to activation of Tumor Necrosis Factor α, Calcitonin Gene Regulating Peptide, Mitogen Activated Protein Kinases, Extracellular signal Regulated Kinase, c-Jun N-terminal kinases can induce neuronal death. This review focuses on different nitric oxide synthases and their role in pathophysiology of neuropathic pain considering NOS as an important therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez S, Moldovan M, Krarup C (2008) Acute energy restriction triggers Wallerian degeneration in mouse. Exp Neurol 212:166–178

    Article  CAS  PubMed  Google Scholar 

  • Antosova M et al (2012) Nitric oxide—important messenger in human body. Open J Mol Integr Physiol 2(3):9. Art No. 21845

  • Baron R (2000) Neuropathic pain. The long path from mechanisms to mechanism-based treatment. Anaesthesist 49(5):373–386

    Article  CAS  PubMed  Google Scholar 

  • Borsani E, Giovannozzi S, Cocchi MA, Boninsegna R, Rezzani R, Rodella LF (2012) Endothelial nitric oxide synthase in dorsal root ganglia during chronic inflammatory nociception. Cells Tissues Organs 197(2):159–168

    Article  PubMed  Google Scholar 

  • Boulton AJ (2007) Diabetic neuropathy: classification, measurement and treatment. Curr Opin Endocrinol Diabetes Obes 14:141–145

    Article  PubMed  Google Scholar 

  • Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23:153–165

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433–454

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Mancuso C, Calvani C et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 10:766–775

    Article  Google Scholar 

  • Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP (2000) Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 184:409–420

    Article  CAS  PubMed  Google Scholar 

  • Cellek S (2004) Point of NO return for nitrergic nerves in diabetes: a new insight into diabetic complications. Curr Pharm Des 10:3683–3695

    Article  CAS  PubMed  Google Scholar 

  • Cho HS, Shin YS, Lee YH, Cho WH, Ko YK (2009) Relationship between neuronal nitric oxide synthase and NADPH-diaphorase in the dorsal root ganglia during neuropathic pain. Korean J Anesthesiol 57(3):342–349

    Article  CAS  Google Scholar 

  • Chu YC, Guan Y, Skinner J, Raja SN, Johns RA, Tao YX (2005) Effect of genetic knockout or pharmacological inhibition of neuronal nitric oxide synthase on complete Freund’s adjuvant-induced persistent pain. Pain 119:113–123

    Article  CAS  PubMed  Google Scholar 

  • Cizkova D, Lukacova N, Marsala M, Marsala J (2002) Neuropathic pain is associated with alterations of nitric oxide synthase immunoreactivity and catalytic activity in dorsal root ganglia and spinal dorsal horn. Brain Res Bull 58:161–171

    Article  CAS  PubMed  Google Scholar 

  • Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1:1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Day AS, Lue JH, Sun WZ, Shieh JY, Wen CY (2001) A beta-fiber intensity stimulation of chronically constricted median nerve induces c-fos expression in thalamic projection neurons of the cuneate nucleus in rats with behavioral signs of neuropathic pain. Brain Res 895:194–203

    Article  CAS  PubMed  Google Scholar 

  • de la Puente B, Nadal X, Portillo-Salido E, Sanchez-Arroyos R, Ovalle S, Palacios G et al (2009) Sigma-1 receptors regulate activity-induced spinal sensitisation and neuropathic pain after peripheral nerve injury. Pain 145:294–303

    Article  PubMed  Google Scholar 

  • Dogonay S, Evereklioglu C, Turkoz Y, Servinc A, Mehmet N, Savli H (2002) Comparison of serum NO, TNF-α, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye 16:163–170

    Article  Google Scholar 

  • Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837

    Article  PubMed Central  PubMed  Google Scholar 

  • Gallo EF, Iadecola C (2011) Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. J Neurosci 31:6947–6955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao X, Kim HK, Chung JM, Chung K (2007) Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 131:262–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guix FX, Uribesalgo I, Coma M, Muñoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    Article  CAS  PubMed  Google Scholar 

  • Ha HC, Hester LD, Snyder SH (2002) Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci USA 99:3270–3275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamza M, Wang XM, Wu T et al (2010) Nitric oxide is negatively correlated to pain during acute inflammation. Mol Pain 6:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Hansson P, Backonja M, Bouhassira D (2007) Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain 129:256–259

    Article  PubMed  Google Scholar 

  • Hara MR, Snyder SH (2007) Cell signaling and neuronal death. Ann Rev Pharmacol Toxicol 47:117–141

    Article  CAS  Google Scholar 

  • Heltianu C, Guja C, Manea SA (2011) Genetic determinants of microvascular complications in type 1 diabetes. Type 1:3–28

    Google Scholar 

  • John G (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27(11):2783–2802

    Article  Google Scholar 

  • Kakita H, Aoyama M, Nagaya Y, Asai H, Hussein MH, Suzuki M, Kato S, Saitoh S, Asai K (2013) Diclofenac enhances proinflammatory cytokine induced phagocytosis of cultured microglia via nitric oxide production. Toxicol Appl Pharmacol 268:99–105

    Article  CAS  PubMed  Google Scholar 

  • Keswani SC, Bosch-Marcé M, Reeda N, Fischer A, Semenza GL et al (2011) Nitric oxide prevents axonal degeneration by inducing HIF-1 dependent expression of erythropoietin. Proc Natl Acad Sci USA 108:4986–4990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S (2010) Macrophage inflammatory protein-1 alpha mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1 beta up-regulation. Pain 149:305–315

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Kwon YB, Roh DH, Yoon SY, Han HJ, Kim KW et al (2006) Intrathecal treatment with sigma 1 receptor antagonists reduces formalin-induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice. Br J Pharmacol 148:490–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HW, Roh DH, Yoon SY, Seo HS, Kwon YB, Han HJ et al (2008) Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol 154:1125–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD (2010) Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 30:6658–6666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labinskyy N, Hicks S, Grijalva J, Edwards J (2010) The contrary impact of diabetes and exercise on endothelial nitric oxide synthase function. WebmedCentral Physiology 1(12):WMC001376

  • Levy D, Zochodne DW (2004) NO pain: potential roles of nitric oxide in neuropathic pain. Pain Pract 4:11–18

    Article  PubMed  Google Scholar 

  • Levy D, Kubes P, Zochodne DW (2001) Delayed peripheral nerve degeneration, regeneration, and pain in mice lacking inducible nitric oxide synthase. J Neuropathol Exp Neurol 60(5):411–421

    CAS  PubMed  Google Scholar 

  • Li J, Vause CV, Durham PL (2008) Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res 1196:22–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linares D, Taconis M, Mana P, Correcha M, Fordham S, Staykova M et al (2006) Neuronal nitric oxide synthase plays a key role in CNS demyelination. J Neurosci 26:12672–12681

    Article  CAS  PubMed  Google Scholar 

  • Luo ZD, Cizkova D (2000) The role of nitric oxide in nociception. Current Rev Pain 4(6):459–466

    Article  CAS  Google Scholar 

  • Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCarberg BH, Billington R (2006) Consequences of neuropathic pain: quality of life issues and associated costs. Am J Manag Care 12:S263–S268

    PubMed  Google Scholar 

  • Miller RJ, Jung H, Bhangoo SK, White FA (2009) Cytokine and chemokine regulation of sensory neuron function. In: Sensory Nerves. Springer, Berlin, Heidelberg, pp 417–449

  • Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Cinelli MA, Kang S, Silverman RB (2014) Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev. doi:10.1039/C3CS60467E

  • Narenjkar J, Roghani M, Alambeygi H, Sedaghati F (2011) The effect of the flavonoid quercetin on pain sensation in diabetic rats. Basic Clin Neurosci 2(3):51–57

    Google Scholar 

  • Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ (2001) Chemokines and glycoprotein 120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21:5027–5035

    CAS  PubMed  Google Scholar 

  • Pannu R, Singh I (2006) Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int 49(2):170–182

    Article  CAS  PubMed  Google Scholar 

  • Pavlov VIA, Obrosova IG (2008) Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin-induced mouse model of diabetes. Diabetologia 51(11):2126–2133

    Article  PubMed Central  PubMed  Google Scholar 

  • Persechini A, Tran QK, Black DJ, Gogol EP (2013) Calmodulin-induced structural changes in endothelial nitric oxide synthase. FEBS Lett 587(3):297–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Premkumar LS, Pabbidi RM (2013) Diabetic peripheral neuropathy: role of reactive oxygen and nitrogen species. Cell Biochem Biophys 67(2):373–383

  • Purwata TE (2011) High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res 4:169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG (2002) Nitric oxide blocks fast, slow, and persistent Na + channels in C-type DRG neurons by S-nitrosylation. J Neurophysiol 87(2):761–775

    CAS  PubMed  Google Scholar 

  • Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW et al (2008a) Intrathecal administration of sigma-1 receptor agonists facilitates nociception: involvement of a protein kinase C-dependent pathway. J Neurosci Res 86:3644–3654

    Article  CAS  PubMed  Google Scholar 

  • Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW et al (2008b) Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology 109:879–889

    Article  CAS  PubMed  Google Scholar 

  • Roh DH, Yoon SY, Seo HS, Kang SY, Moon JY, Song S et al (2010) Sigma-1 receptor-induced increase in murine spinal NR1 phosphorylation is mediated by the PKCalpha and varepsilon, but not the PKCzeta, isoforms. Neurosci Lett 477:95–99

    Article  CAS  PubMed  Google Scholar 

  • Roh DH, Choi SR, Yoon SY, Kang SY, Moon JY, Kwon SG, Lee JH (2011) Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol 163(8):1707–1720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saha RN, Pahan K (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8(5–6):929–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh J, Yagihashi S, Toyota T (2003) The possible role of tumor necrosis factor-alpha in diabetic polyneuropathy. Exp Diabesity Res 4:65–71

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidtko A, Tegeder I, Geisslinger G (2009) No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci 32(6):339–346

    Article  CAS  PubMed  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Schwiebert EM (2000) Extracellular ATP-mediated propagation of Ca(2+) waves. Focus on mechanical strain-induced Ca(2+) waves are propagated via ATP release and purinergic receptor activation. Am J Physiol Cell Physiol 279:C281–C283

    CAS  PubMed  Google Scholar 

  • Shaikh AS, Somani RS (2010) Animal models and biomarkers of neuropathy in diabetic rodents. Indian J Pharmacol 42:3

    Google Scholar 

  • Sharma S, Chopra K, Kulkarni SK (2007) Effect of insulin and its combination with resveratrol or curcumin in attention of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother Res 21:278–283

    Article  CAS  PubMed  Google Scholar 

  • Sima A, Hideki Kamiya AF (2006) Diabetic neuropathy differs in type 1 and type 2 diabetes. Ann NY Acad Sci 1084(1):235–249

    Article  PubMed  Google Scholar 

  • Smith BC, Underbakke ES, Kulp DW, Schief WR, Marletta MA (2013) Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation. Proc Natl Acad Sci 110(38):E3577–E3586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stavniichuk R, Shevalye H, Lupachyk S et al (2014) Peroxynitrite and protein nitrationin the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev. doi:10.10002/dmrr.2549

    PubMed  Google Scholar 

  • Stuehr DJ, Griffith OW (2006) Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol 65:287–346

    Article  Google Scholar 

  • Tanabe M et al (2009) Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice. Neuropharmacol 56(3):702–708

    Article  CAS  Google Scholar 

  • Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol 75(4):820–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas MS, Zhang W, Jordan PM, Saragovi HU, Taglialatela G (2005) Signaling pathways mediating a selective induction of nitric oxide synthase II by tumor necrosis factor alpha in nerve growth factor-responsive cells. J Neuroinflammation 2:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Toda N, Imamura T, Okamura T (2010) Alteration of nitric oxide-mediated blood flow regulation in diabetes mellitus. Pharmacol Ther 127:189–209

    Article  CAS  PubMed  Google Scholar 

  • Treede RD, Jensen TS, Campbell JN et al (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70:1630–1635

    Article  CAS  PubMed  Google Scholar 

  • Vallance P, Leiper J (2002) Blocking NO synthesis: how, where and why? Nat Rev Drug Discov 1:939–950

    Article  CAS  PubMed  Google Scholar 

  • Vareniuk I, Pacher P, Pavlov IA, Drel VR, Obrosova IG (2009) Peripheral neuropathy in mice with neuronal nitric oxide synthase gene deficiency. Int J Mol Med 23(5):571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vause CV, Durham PL (2009) CGRP stimulation of iNOS and NO release from trigeminal ganglion glial cells involve mitogen-activated protein kinase pathways. J Neurochem 110:811–821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Viaro F, Nobre F, Evora PRB (2000) Expression of nitric oxide synthases in the pathophysiology of cardiovascular diseases. Arq Bras Cardiol 74(4):380–393

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Tsai YJ, Chen SH, Lin CT, Lue JH (2012) Nitric oxide implicates c-Fos expression in the cuneate nucleus following electrical stimulation of the transected median nerve. Neurochem Res 37:84–95

    Article  PubMed  Google Scholar 

  • Wang HY, Tsai YJ, Chen SH, Lin CT, Lue JH (2013) Lysophosphatidylcholine causes neuropathic pain via the increase of neuronal nitric oxide synthase in the dorsal root ganglion and cuneate nucleus. Pharmacol Biochem Behav 106:47–56

    Article  CAS  PubMed  Google Scholar 

  • Yang HC, Auh QS, Lee J, Ro JY (2012) Masseter inflammation differentially regulates three nitric oxide synthases in the rat trigeminal subnucleus caudalis. Arch Oral Biol 57:1141–1146

    Article  Google Scholar 

  • Zhang N, Inan S, Cowan A, Sun R, Wang JM, Rogers TJ, Caterina M, Oppenheim JJ (2005) A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc Natl Acad Sci USA 102:4536–4541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlawat, A., Rana, A., Goyal, N. et al. Potential role of nitric oxide synthase isoforms in pathophysiology of neuropathic pain. Inflammopharmacol 22, 269–278 (2014). https://doi.org/10.1007/s10787-014-0213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-014-0213-0

Keywords

Navigation