Skip to main content
Log in

Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The passivity and passivity breakdown of 304 stainless steel were investigated in 0.25 M Na2SO4solutions of pH 10. The effect of applied potential and the presence of Cl ions in the electrolyte were also studied. Different electrochemical methods such as open circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS) were used. The results showed that the steel electrode passivates under open circuit conditions and also under potentiostatic control. The rate of passive film thickening under open circuit conditions follows a simple logarithmic law. Addition of Cl ion shifts the polarization curves in the active direction and above a critical chloride concentration, [Cl ] ≥ 0.15 M, pitting corrosion occurs and the pitting potential, E pit, decreases linearly with the logarithm of [Cl]. The addition of sulphate ions to the chloride-containing solutions was found to inhibit the pitting process, and at [SO2- 4] ≥ 0.25 M, a complete immunity to pitting corrosion was recorded. The impedance measurements provided support for film thickening and film breakdown reactions. An equivalent circuit model which consists of a pure resistor, R Ω, in series with a parallel combination of a pure resistor, R p, and a constant phase element, Q, was proposed to describe the electrode/electrolyte interface. The passive film thickness was found to increase with applied potential up to a critical value of 0.3 V. At higher voltages, breakdown of the passive film occured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.R. Clayton and I. Olefjord; in Corrosion Mechanisms in Theory and Practice, P. Marcis and J. Oudar, Editors, p 175, Marcel Decker, New York (1995), and references therein.

    Google Scholar 

  2. E. De Vito and P. Marcus, Surf. Interf. Anal, 19 (1992) 403.

    Google Scholar 

  3. W. Wang, D. Costa and P. Marcus, J. Electrochem. Soc., 141 (1994) 111.

    Google Scholar 

  4. V. Maricue, W. Yang and P. Marcus, J. Electrochem. Soc., 143 (1996) 1182.

    Google Scholar 

  5. S.S. El-Egamy, W.A. Badawy and H. Shehata, Corrosion Prevention Control, 47 (2000) 35.

    Google Scholar 

  6. S.S. El-Egamy, W.A. Badawy and H. Shehata, Mat. Wiss. und. Werkstofftech, 31 (2001)737.

    Google Scholar 

  7. S.I. Ali and G.J. Abbaschian, Corros. Sci., 18 (1978)15.

    Google Scholar 

  8. H.C. Man, D.R. Gabe, Corros. Sci., 21 (1981) 713.

    Google Scholar 

  9. J.J. Park, S.I. Pyun, W.J. Lee and H.P. Kim, Corrosion, 55 (1999) 380.

    Google Scholar 

  10. A.R. Brooks, C.R. Clayton, K. Doss and Y.C. Lu, J. Electrochem. Soc., 133 (1986) 2459.

    Google Scholar 

  11. T. Hong, G.W. Walter and M. Nagumo, Corros. Sci., 38 (1996) 1525.

    Google Scholar 

  12. J.H. Wang, C.C. Su and Z. Zsklarska-Smialowska, Corrosion, 44 (1988) 732.

    Google Scholar 

  13. S.T. Amaral and I.L. Muller, Corros. Sci., 41 (1999) 747.

    Google Scholar 

  14. T. Kodoma, 5th Int. Congr. Metallic Corrosion, p. 223, NACE, Houston 1974.

    Google Scholar 

  15. R.P. Frankenthal and H.W. Pickering, J. Electrochem. Soc., 119 (1972) 1304.

    Google Scholar 

  16. Z. Szklarska-Smialowska, Corros. Sci., 18 (1978) 97.

    Google Scholar 

  17. A. Kolics, J.C. Polkinghorne and A. Wieckowski, Electrochim. Acta, 43 (1998) 2605.

    Google Scholar 

  18. M. Keddam, O. R. Mattos and H. Taken; Electrochim. Acta, 31 (1986) 1159.

    Google Scholar 

  19. A. L. Dobbelaar, E. C. M. Herman and J. H. W. De Wit; Corros. Sci., 33 (1992) 765.

    Google Scholar 

  20. D. D. Macdonald and Urquidi-Macdonald in Modification of Passive Films; P. Marcus, B. Baroux and M. Keddam, Editors, p. 46, Ins. Of Materials, London (1994).

    Google Scholar 

  21. D. D. Macdonald, S. R. Biaggio and H. Song; J. Electrochem. Soc., 139 (1992) 17.

    Google Scholar 

  22. J.R. Macdonald, “Impedance Spectroscopy” New York, N.Y., John Wiley & Sons, 1987.

    Google Scholar 

  23. K. Juttner, W.J. Lorenz and W. Paatsch, Corros. Sci., 29 (1989) 279.

    Google Scholar 

  24. U. Rammelt and R. Reinhard, Corros. Sci., 27 (1987) 373.

    Google Scholar 

  25. K Juettner, W.J. Lorenz, W. Paatsch, M.W. Kendig and F. Mansfeld, Werkst. und Korros., 36 (1985) 120.

    Google Scholar 

  26. S.C. Thomas and V.I. Birss, J. Electrochem. Soc., 144 (1997) 1353.

    Google Scholar 

  27. J.W. Diggle, T.C. Downie and C.W. Goulding, Electrochim. Acta, 15 (1970) 1079.

    Google Scholar 

  28. S.M. Abd El-Motaal, N.H. Hilal and W.A. Badawy, Electrochim. Acta, 39 (1994) 3611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-egamy, S.S., Badaway, W.A. Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions. Journal of Applied Electrochemistry 34, 1153–1158 (2004). https://doi.org/10.1007/s10800-004-1709-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-004-1709-x

Navigation