Skip to main content
Log in

Impedance spectroscopy study of anodic growth of thick zirconium oxide films in H2SO4, Na2SO4 and NaOH solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic zirconium oxide films were grown potentiodynamically at a constant sweep rate up to the breakdown potential on rod electrodes made of 99.8% metallic zirconium. Different media of different pH were tested, namely 0.5 M H2SO4 (pH 0.3), 0.1 M Na2SO4 (pH 9) and 0.1 M NaOH (pH 13). By electrochemical impedance spectroscopy and scanning electron microscopy the oxide film thickness was monitored during the voltage scan. The behaviour was found to be different in the presence and absence of sulphate anions. In the presence of SO 2−4 , the films were dense but breakdown occurred at 300–340 nm. In NaOH, two relaxations appeared above 50 V and were ascribed to a bi-layered coating structure and the maximum layer thickness was 720 nm before breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meisterjahn P., Hoppe H.W., Schultze J.W., (1987) vana. J. Electroanal. Chem. 217: 15

    Article  Google Scholar 

  2. Schefold J., Lincot D., Ambard A., Kerrec O., (2003) vana. J. Electrochem. Soc. 150: B451

    Article  CAS  Google Scholar 

  3. Cassir M., Goubin F., Bernay C., Vernoux P., Lincot D., (2002) vana. Appl. Surf. Science 193: 120

    Article  CAS  Google Scholar 

  4. Di Quarto F., Piazza S., Sunseri C., (1983) vana. J. Electrochem. Soc. 130: 1014

    Article  CAS  Google Scholar 

  5. Khalil N., Bowen A., Leach J.S.L., (1988) vana. Electrochim. Acta 33: 1721

    Article  CAS  Google Scholar 

  6. Patrito E.M., Torresi R.M., Leiva E.P.M., Macagno V.A., (1990) vana. J. Electrochem. Soc. 137: 524

    Article  CAS  Google Scholar 

  7. Zhang L., Macdonald D.D., Sikora E., Sikora J., (1998) vana. J. Electrochem. Soc. 145: 898

    Article  CAS  Google Scholar 

  8. Bardwell J.A., MacKubre M.C.H., (1991) vana. Electrochim. Acta 36: 647

    Article  CAS  Google Scholar 

  9. Leach J.S.L., Pearson B.R., (1984) vana. Electrochim. Acta 29: 1263

    Article  CAS  Google Scholar 

  10. Di Quarto F., Piazza S., Sunseri C., (1984) vana. J. Electrochem. Soc. 131: 2901

    Article  CAS  Google Scholar 

  11. Leach J.S.L., Pearson B.R., (1988) vana. Corros. Sci. 28: 43

    Article  CAS  Google Scholar 

  12. Wood G.C., Pearson C., (1967) vana. Corros. Sci. 7: 119

    Article  CAS  Google Scholar 

  13. Bataillon C., Brunet S., (1994) vana. Electrochim. Acta 39: 455

    Article  CAS  Google Scholar 

  14. Vermoyal J.J., Frichet A., Dessemond L., Hammou A., (1999) vana. Electrochim. Acta 45: 1039

    Article  CAS  Google Scholar 

  15. Jonscher A.K., (1983) Dielectric Relaxation in Solids. Chelsea Dielectric Press, London

    Google Scholar 

  16. Jonscher A.K., (1981) vana. J. Mater. Sci. 16: 2037

    Article  CAS  Google Scholar 

  17. Jonsher A.K., (1975) vana. Nature 253: 717

    Article  Google Scholar 

  18. Brug G.J., Van den Eeden A.L.G., Sluyters-Rehabach M., Sluyters J.H., (1984) avna. J. Electroanal. Chem. 176: 275

    Article  CAS  Google Scholar 

  19. Schultze J.W., Vetter K.J., (1971) vana. Ber. Bunsenges. Phys. Chem. 75: 470

    CAS  Google Scholar 

  20. Patrito E.M., Macagno V.A., (1993) vana. J. Electrochem. Soc. 140:1576

    Article  CAS  Google Scholar 

  21. Bardwell J.A., MacKubre M.C.H., (1991) vana. Electrochim. Acta, 36:647

    Article  CAS  Google Scholar 

  22. Ord J.L., Smet D.J., (1995) vana. J. Electrochem. Soc. 142: 879

    Article  CAS  Google Scholar 

  23. Rahim M.A.A., Khalil M.W., (1996) vana. J. Appl. Electrochem. 26:1037

    Article  Google Scholar 

  24. Leach J.S.L., Pearson B.R., (1984) vana. Electrochim. Acta 29:1263

    Article  CAS  Google Scholar 

  25. Pourbaix M., (1963) Atlas d’équilibre électrochimiques à 25°C. Gauthier-Villars, Paris, p. 226

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to X. Montero for anodisation experiments in Na2SO4 solutions. We thank Dr. D. Lincot (Laboratoire d’Électrochimie et Chimie Analytique, ENSCP), Dr. J Schefold and Dr. A. Ambard (EDF Research and development, Département Matériaux et Mécanique des Composant, Morêt sur Loing, France) for fruitful discussions of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to THIERRY PAUPORTÉ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

PAUPORTÉ, T., FINNE, J. Impedance spectroscopy study of anodic growth of thick zirconium oxide films in H2SO4, Na2SO4 and NaOH solutions. J Appl Electrochem 36, 33–41 (2006). https://doi.org/10.1007/s10800-005-9011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9011-0

Keywords

Navigation