Skip to main content
Log in

Electrocatalytic oxidation of ethanol on Pt–Mo bimetallic electrodes in acid medium

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pt–Mo alloy electrocatalysts were prepared by an arc-melting furnace process to investigate the origin of their enhanced activity toward ethanol oxidation. Two Mo contents were chosen in zones of the binary phase diagram where they are supposed to form either a pure alloy mixture or a solid solution. Pt–Mo alloy catalysts were more active than Pt-alone. Gradual Mo dissolution at the electrode surface was observed after voltammetric and chronoamperometric measurements. The dissolved Mo contributed to the catalytic effect of the electrode as underpotentially deposited (upd) adatoms. This dissolution probably also leads to an increase in the electrode surface roughness. Low molybdenum content in the electrode material enhances the activity toward ethanol oxidation when compared to Pt-alone. Ethanol oxidation was also investigated by in situ infrared reflectance spectroscopy in order to determine the presence of adsorbed intermediates like CO species. Acetaldehyde, acetic acid and CO2 were also found by spectroscopic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Santos V.P., Tremiliosi-Filho G. (2003). J. Electroanal. Chem. 554:395

    Article  Google Scholar 

  2. Camara G.A., Iwasita T. (2005). J. Electroanal. Chem. 518:315

    Article  Google Scholar 

  3. Vigier F., Coutanceau C., Hahn F., Belgsir E.M., Lamy C. (2004). J. Electroanal. Chem. 563:81

    Article  CAS  Google Scholar 

  4. Lamy C., Rousseau S., Belgsir E.M., Coutanceau C., Léger J.-M. (2004). Electrochim. Acta 49:3901

    Article  CAS  Google Scholar 

  5. Léger J.-M., Rousseau S., Coutanceau C., Hahn F., Lamy C. (2005). Electrochim. Acta 50:5118

    Article  Google Scholar 

  6. Grgur B.N., Zhuang G., Markovic N.M., Ross P.N. Jr. (1997). J. Phys. Chem. B 101:3910

    Article  CAS  Google Scholar 

  7. Grgur B.N., Markovic N.M., Ross P.N. Jr. (1998). J. Phys. Chem. B 102:2494

    Article  CAS  Google Scholar 

  8. Mukerjee S., Urian R.C. (2002). Electrochim. Acta 47:3219

    Article  CAS  Google Scholar 

  9. Mylswamy S., Wang C.Y., Liu R.S., Lee J.-F., Tang M.-J., Lee J.-J., Weng B.-J. (2005). Chem. Phys. Lett. 412:444

    Article  CAS  Google Scholar 

  10. Léger J.-M. (2005). Electrochim. Acta 50:3123

    Article  Google Scholar 

  11. Jiang L., Sun G., Wang S., Wang G., Xin Q., Zhou Z., Zhou B. (2005). Binny. Electrochem. Commun. 7:663

    Article  CAS  Google Scholar 

  12. Song S.Q., Zhou W.J., Zhou Z.H., Jiang L.H., Sun G.Q., Xin Q., Leontidis V., Kontou S., Tsiakaras P. (2005). Int. J. Hygrogen Energy 30:995

    Article  CAS  Google Scholar 

  13. Song C., Khanfar M., Pickup P.G. (2006). J. Appl. Electrochem. 36:339

    Article  CAS  Google Scholar 

  14. Bai Y., Wu J., Xi J., Wang J., Zhu W., Chen L., Qiu X. (2005). Binny. Electrochem. Commun. 7:1087

    Article  CAS  Google Scholar 

  15. Massong H., Wang H., Samjeské G., Baltruschat H. (2000). Electrochim. Acta 46:701

    Article  CAS  Google Scholar 

  16. Samjeské G. , Wang H., Löffler Y.T., Baltruschat H. (2002). Binny. Electrochim. Acta 47:3681

    Article  Google Scholar 

  17. Neto A.O., Perez J., Napporn W.T., Ticianelli E.A., Gonzalez E.R. (2000). J. Braz. Chem. Soc. 11:39

    Article  Google Scholar 

  18. Pozio A., Giorgi L., Antolini E., Passalacqua E. (2000). Binny. Electrochim. Acta 46:555

    Article  CAS  Google Scholar 

  19. Papageorgopoulos D.C., Keijzer M., de Bruijn F.A. (2002). Binny. Electrochim. Acta 48:197

    Article  CAS  Google Scholar 

  20. Ioroi T., Fujiwara N., Siroma Z., Yasuda K., Miyazaki Y. (2002). Binny. Electrochem. Commun. 4:442

    Article  CAS  Google Scholar 

  21. Hou Z., Yi B., Yu H., Lin Z., Zhang H. (2003). J. Power Sources 123:116

    Article  CAS  Google Scholar 

  22. Zhou W.J., Song S.Q., Li W.Z., Zhou Z.H., Sun G.Q., Xin Q., Douvartzides S., Tsiakaras P. (2003). J. Power Sources 140:50

    Article  Google Scholar 

  23. Santiago E.I., Camara G.A., Ticianelli E.A. (2003). Electrochim. Acta 48:3527

    Article  CAS  Google Scholar 

  24. Zhou W.J., Song S.Q., Li W.Z., Sun G.Q., Xin Q., Kontou S., Poulianitis K., Tsiakaras P. (2004). Solid State Ionics 175:797

    Article  CAS  Google Scholar 

  25. Jaksic J.M., Vracar Lj., Neophytides S.G., Zafeiratos S., Papakonstantinou G., Krstajic N.V., Jaksic M.M. (2005). Surf. Sci. 598:156

    Article  CAS  Google Scholar 

  26. Mukerjee S., Lee S.L., Ticianelli E.A., McBreen J., Grgur B.N., Markovic N.M., Ross P.N., Giallombardo J.R., de Castro E.S. (1999). Binny. Electrochem. Solid State Lett. 2:12

    Article  CAS  Google Scholar 

  27. Jaksic M.M. (2000). Electrochim. Acta 45:4085

    Article  CAS  Google Scholar 

  28. Zhang J., Wang Y., Fachini E.R., Cabrera C.R. (1999). Electrochem. Solid State Lett. 2:437

    Article  CAS  Google Scholar 

  29. A.J. Bard, R. Parsons and J. Jordan, in M. Dekker (ed.), Aqueous Solution, (IUPAC, New York and Basel, 1985), p. 453

  30. Sasaki K., Mo Y., Wang J.X., Balasubramanian M., Uribe F., McBreen J., Adzic R.R. (2003). Electrochim. Acta 48:3841

    Article  CAS  Google Scholar 

  31. Zhang J., Lima F.H.B., Shao M.H., Sasaki K., Wang J.X., Hanson J., Adzic R.R (2005). J. Phys. Chem. B 109:22701

    Article  CAS  Google Scholar 

  32. Lebedeva N.P, Janssen G.J.M. (2005). Electrochim. Acta 51:29

    Article  CAS  Google Scholar 

  33. Janssen G.J.M. (2004). J. Power Sources 136:45

    Article  CAS  Google Scholar 

  34. Iwasita T., Pastor E. (1994). Electrochim. Acta 39:531

    Article  CAS  Google Scholar 

  35. Chang S.C., Leung L.W., Weaver M.J. (1990). J. Phys. Chem. 94:6013

    Article  CAS  Google Scholar 

  36. Iwasita T., Rasch B., Cattaneo E., Vielstich W. (1989). Electrochim. Acta 34:1073

    Article  Google Scholar 

  37. Perez J.M., Beden B., Hahn F., Aldaz A., Lamy C. (1989). J. Electroanal. Chem. 262:251

    Article  CAS  Google Scholar 

  38. Rodes A., Pastor E., Iwasita T. (1994). J. Electroanal. Chem. 376:10

    Article  Google Scholar 

  39. Shao M.H., Adzic R.R (2005). Electrochim. Acta 50:2415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was mainly conducted within under the framework of a collaborative programme CAPES/COFECUB (Comité Français d’Evaluation de la Coopération Universitaire avec le Brésil) under grant no 498/05. D. M. dos Anjos thanks CAPES for the Ph-D fellowship. G. Tremiliosi-Filho, P. Olivi and A.R de Andrade acknowledge FAPESP and CNPq for financial support. The authors also acknowledge Roberto B. de Lima for his help in FTIR studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Kokoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Anjos, D.M., Kokoh, K.B., Léger, J. et al. Electrocatalytic oxidation of ethanol on Pt–Mo bimetallic electrodes in acid medium. J Appl Electrochem 36, 1391–1397 (2006). https://doi.org/10.1007/s10800-006-9222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9222-z

Keywords

Navigation