Skip to main content
Log in

Electrolytic decomposition of ammonia to nitrogen in a multi-cell-stacked electrolyzer with a self-pH-adjustment function

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes a study of continuous decomposition characteristics of ammonia to nitrogen in a multi-cell-stacked electrolyzer with an anion exchange membrane. The pH change of ammonia solution in both the anodic and cathodic chambers of a divided cell due to the water splitting reactions was studied together with the electrolytic decomposition of ammonia. The electrolytic decomposition efficiency of ammonia was considerably affected by the pH change of ammonia solution caused by the water splitting reactions. In the anodic chamber with the ammonia solution, the water splitting reaction which produced protons occurred at a pH of less than 8, and in the cathodic chamber, that producing hydroxyl ions occurred at a pH of more than 11. By using the characteristics of the electrolytic water splitting reactions in a divided cell, a continuous electrolyzer with a self-pH-adjustment function was devised, wherein a portion of the ammonia solution from a pH-adjustment reservoir was circulated through the cathodic chambers of the electrolyzer. This enhanced the pH of the ammonia solution being fed from a pH-adjustment reservoir into the anodic chambers of the electrolyzer, which caused a higher ammonia decomposition yield. Based on this electrolyzer, a salt-free ammonia decomposition process was suggested. In this process, ammonia in the solution was continuously and effectively decomposed into environmentally harmless nitrogen gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. Feng C., Sugiura N., Shimada S., Maekawa T. (2003) . J. Hazard. Mater. B103:65

    Article  Google Scholar 

  2. Bae S.K., Park S.C. (1984) . J. Kor. Soc. Environ. Eng. 6:44

    Google Scholar 

  3. Lin S.H., Wu C.L. (1996) . Water Res. 30:715

    Article  CAS  Google Scholar 

  4. Bouwer E.J., Crowe P.B. (1988) . J.AWWA. 80:82

    CAS  Google Scholar 

  5. Kim K.W., Kim Y.J., Kim I.T., Park G.I., Lee I.H. (2005) . Electrochim. Acta 50:4356

    Article  CAS  Google Scholar 

  6. Kim K.W., Kim Y.J., Kim I.T., Park G.I., Lee I.H. (2004) . Kor. Chem. Eng. Res. 42:524

    CAS  Google Scholar 

  7. Kim K.W., Kim Y.J., Kim I.T., Park G.I., Lee I.H. (2005) . Kor. Chem. Eng. Res. 43:9

    CAS  Google Scholar 

  8. Kim K.W., Kim Y.J., Kim I.T., Park G.I., Lee I.H. (2006) . Water Res. 40:1431

    Article  CAS  Google Scholar 

  9. E.P.Bonnin, E.J.Cellar and G.G. Botte, in Proceeding of 206th Meeting of Electrochemical Society, Honolulu, Hawaii, U.S.A., October 3–8 (2004)

  10. Lopez de Mishima B.A., Lescano D., Holgado M.T., Mishima H.T. (1997) . Electrochim. Acta 43:395

    Article  Google Scholar 

  11. Gootzen J.F.E., Wonders A.H., Visscher W., Santen R.A.V. (1997) . Electrochim. Acta 43:1851

    Article  Google Scholar 

  12. Kim K.W., Lee E.H., Kim J.S., Shin K.H., Chung B.I. (2002) . Electrochim. Acta 47:2525

    Article  CAS  Google Scholar 

  13. Marincic L., Leitz F.B. (1978) . J. Appl. Electrochem. 8:333

    Article  CAS  Google Scholar 

  14. Sasaki K., Hisatomi Y. (1970) . J. Electrochem. Soc. 117:758

    Google Scholar 

  15. Oswin H.G., Salomon M. (1963) . Can. J. Chem. 41:1686

    Article  CAS  Google Scholar 

  16. de Vooys A.C.A., Koper M.T.M., van Santen R.A., van Veen J.A.R. (2001) . J. Electroanal. Chem. 506:127

    Article  Google Scholar 

  17. Trasatti S. (1984) . Electrochim. Acta 29:1503

    Article  CAS  Google Scholar 

  18. F. Vitse and G.G. Botte, in Proceeding of 206th Meeting of Electrochemical Society, Honolulu, Hawaii, U.S.A., October 3–8 (2004)

  19. Kim K.W., Lee E.H., Kim J.S., Shin K.H., Chung B.I. (2002) . J. Electrochem. Soc. 149:D187

    Article  CAS  Google Scholar 

  20. Bryabt E.A., Fulton G.P., Budd G.C. (1992) Disinfection Alternatives for Safe Drinking Water. Van Nostrand Reinhold, New York

    Google Scholar 

  21. G. C. White, Handbook of Chlorination and Alternative Disinfectants (John Wiley & Sons, Inc., 1999)

  22. Kim K.W., Lee E.H., Kim J.S., Shin K.H., Kim K.H. (2001) . Electrochim. Acta 46:915

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Wook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KW., Kim, IT., Park, GI. et al. Electrolytic decomposition of ammonia to nitrogen in a multi-cell-stacked electrolyzer with a self-pH-adjustment function. J Appl Electrochem 36, 1415–1426 (2006). https://doi.org/10.1007/s10800-006-9234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9234-8

Keywords

Navigation