Skip to main content
Log in

Effect of W on PtSn/C catalysts for ethanol electrooxidation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Binary and ternary Pt-based catalysts were prepared by the Pechini–Adams modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by TEM and XRD. XRD showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/W and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm−3 H2SO4) and in the presence of ethanol. The results obtained at room temperature showed that the PtSnW/C catalyst display better catalytic activity for ethanol oxidation compared to PtW/C catalyst. The reaction products (acetaldehyde, acetic acid and carbon dioxide) were analyzed by HPLC and identified by in situ infrared reflectance spectroscopy. The latter technique also allowed identification of the intermediate and adsorbed species. The presence of linearly adsorbed CO and CO2 indicated that the cleavage of the C–C bond in the ethanol substrate occurred during the oxidation process. At 90 °C, the Pt85Sn8W7/C catalyst gave higher current and power performances as anode material in a direct ethanol fuel cell (DEFC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) J Electroanal Chem 563:81

    Article  CAS  Google Scholar 

  2. Lamy C (2006) In: Lens PNL, Kennes C, Le Cloirec P, Deshusses MA (eds) Waste gas treatment for resource recovery, integrated environmental technology series, Chap. 21. IWA publishing, pp 360–383

  3. Iwasita T, Pastor E (1994) Electrochim Acta 39:531

    Article  CAS  Google Scholar 

  4. Xia XH, Liess H-D, Iwasita T (1997) J Electroanal Chem 437:233

    Article  CAS  Google Scholar 

  5. Neto AO, Giz MJ, Perez J, Ticianelli EA, Gonzalez ER (2002) J Electrochem Soc 149:A272

    Article  CAS  Google Scholar 

  6. Camara GA, de Lima RB, Iwasita T (2004) Electrochem Commun 6:812

    Article  CAS  Google Scholar 

  7. Shao MH, Adzic RR (2005) Electrochim Acta 50:2415

    Article  CAS  Google Scholar 

  8. Lamy C, Belgsir EM, Léger J-M (2001) J Appl Electrochem 31:799

    Article  CAS  Google Scholar 

  9. Camara GA, de Lima RB, Iwasita T (2005) J Electroanal Chem 585:128

    Article  CAS  Google Scholar 

  10. Léger J-M, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) Electrochim Acta 50:5118

    Article  CAS  Google Scholar 

  11. Jusys Z, Schmidt TJ, Dubau L, Lasch K, Jörissen L, Garche J, Behm RJ (2002) J Power Sources 105:297

    Article  CAS  Google Scholar 

  12. Santos VP, Tremiliosi-Filho G (2003) J Electroanal Chem 554–555:395

    Article  CAS  Google Scholar 

  13. Pereira MG, Jiménez MD, Elizalde MP, Manzo-Robledo A, Alonso-Vante N (2004) Electrochim Acta 49:3917

    Article  CAS  Google Scholar 

  14. Zhou WJ, Song SQ, Li WZ, Sun GQ, Xin Q, Kontou S, Poulianitis K, Tsiakaras P (2004) Solid State Ionics 175:797

    Article  CAS  Google Scholar 

  15. Xu C, Shen PK, Ji X, Zeng R, Liu Y (2005) Electrochem Commun 7:1305

    Article  CAS  Google Scholar 

  16. Tarasevich MR, Karichev ZR, Bogdanovskaya VA, Lubnin EN, Kapustin AV (2005) Electrochem Commun 7:141

    Article  CAS  Google Scholar 

  17. Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Electrochim Acta 50:5384

    Article  CAS  Google Scholar 

  18. Song SQ, Zhou WJ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Leontidis V, Kontou S, Tsiakaras P (2005) Int J Hydrogen Energy 30:995

    Article  CAS  Google Scholar 

  19. Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Xin Q, Douvartzides S, Tsiakaras P (2005) J Power Sources 140:50

    Article  CAS  Google Scholar 

  20. Wang H, Jusys Z, Behm RJ (2006) J Power Sources 154:351

    Article  CAS  Google Scholar 

  21. Mann J, Yao N, Bocarsly AB (2006) Langmuir 22:10432

    Article  CAS  Google Scholar 

  22. Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ (2006) Electrochim Acta 52:221

    Article  CAS  Google Scholar 

  23. Goetz M, Wendt H (1998) Electrochim Acta 43:3637

    Article  Google Scholar 

  24. Neto AO, Perez J, Napporn WT, Ticianelli EA, Gonzalez ER (2000) J Braz Chem Soc 11:39

    Article  Google Scholar 

  25. Roth C, Goetz M, Fuess H (2001) J Appl Electrochem 31:793

    Article  CAS  Google Scholar 

  26. de Oliveira MB, Profeti LPR, Olivi P (2005) Electrochem Commun 7:703

    Article  CAS  Google Scholar 

  27. dos Anjos DM, Kokoh KB, Léger J-M, de Andrade AR, Olivi P, Tremiliosi-Filho G (2006) J Appl Electrochem 36:1391

    Article  CAS  Google Scholar 

  28. Ribeiro J, dos Anjos DM, Kokoh KB, Coutanceau C, Léger J-M, Olivi P, de Andrade AR, Tremiliosi-Filho G (2007) Electrochim Acta 52:6997

    Article  CAS  Google Scholar 

  29. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger J-M (2004) Electrochim Acta 49:3901

    Article  CAS  Google Scholar 

  30. Rousseau S, Coutanceau C, Lamy C, Léger J-M (2006) J Power Sources 158:18

    Article  CAS  Google Scholar 

  31. Antolini E, Colmati F, Gonzalez ER (2007) Electrochem Commun 9:398

    Article  CAS  Google Scholar 

  32. Colmati F, Antolini E, Gonzalez ER (2007) J Electrochem Soc 154:B39

    Article  CAS  Google Scholar 

  33. Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Appl Catal B: Environ 46:273

    Article  CAS  Google Scholar 

  34. Roman-Martinez C, Cazorla-Amoros D, Yamashita H, de Miguel S, Scelza OA (2000) Langmuir 16:1123

    Article  CAS  Google Scholar 

  35. Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Electrochim Acta 52:6622

    Article  CAS  Google Scholar 

  36. Umeda M, Ojima H, Mohamedi M, Uchida I (2004) J Power Sources 136:10

    Article  CAS  Google Scholar 

  37. Shen PK, Tseung ACC (1994) J Electrochem Soc 141:3082

    Article  CAS  Google Scholar 

  38. Tanaka S, Umeda M, Ojima H, Usui Y, Kimura O, Uchida I (2005) J Power Sources 152:34

    Article  CAS  Google Scholar 

  39. McLeod EJ, Birss VI (2005) Electrochim Acta 51:684

    Article  CAS  Google Scholar 

  40. Profeti LPR, Simões FC, Olivi P, Kokoh KB, Coutanceau C, Léger J-M, Lamy C (2006) J Power Sources 158:1195

    Article  CAS  Google Scholar 

  41. Pechini MP, Adams N (1967) US Patent, 3,330,697:1

  42. Ribeiro J, Alves PDP, de Andrade AR (2007) J Mater Sci 42:9293

    Article  CAS  Google Scholar 

  43. Cullity BD (1978) In: Elements of X-Ray diffraction. Addison-Wesley, San Francisco, p. 102

  44. Powder Diffraction File: 01-087-0646, 00-035-1360 and 00-041-0905 Joint Committee on Powder Diffraction Standards (2005) International Center for Diffraction Data, Vol. PDF-2, Pennsylvania, USA

  45. Sutton LE (1965) In: Table of interatomic distances and configuration in molecules and ions, Supplement 1956–1959, Special publication No. 18, Chemical Society, London, UK

  46. Hume-Rothery W, Smallman RE, Hayworth CW (1969) The structure of metals and alloy, London

  47. Ribeiro J, de Andrade AR (2004) J Electrochem Soc 151:D106

    Article  CAS  Google Scholar 

  48. Colmati F, Antolini E, Gonzalez ER (2007) Appl Catal B: Environ 73:106

    Google Scholar 

  49. Calegaro ML, Suffredini HB, Machado SAS, Avaca LA (2006) J Power Sources 156:300

    Article  CAS  Google Scholar 

  50. Vielstich W (1968) In: Fuel cells: modern processes for the electrochemical production of energy, Wiley-Interscience

  51. Lamy C, Lima A, Le Rhun V, Delime F, Coutanceau C, Léger J-M (2002) J Power Sources 105:283

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was mainly conducted within the framework of a collaborative program CAPES/COFECUB under grant n°498/05. J. Ribeiro acknowledges CAPES for the postdoc fellowship (BEX n° 0006/06-8). G. Tremiliosi-Filho, P. Olivi and A. R. de Andrade acknowledge FAPESP, FINEP and CNPq (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Kokoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, J., dos Anjos, D.M., Léger, J.M. et al. Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38, 653–662 (2008). https://doi.org/10.1007/s10800-008-9484-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9484-8

Keywords

Navigation