Skip to main content
Log in

Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The oxidation of ferrocene (FeCp2) to ferrocenium cation (FeCp +2 ) (where Cp: cyclopentadienyl anion, C5H5 ) was investigated by means of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) on either platinum (Pt) or glassy carbon (G-C) electrodes in acetonitrile (ACN), acetone (ACE), and acetonitrile (ACN)/acetone (ACE) binary mixtures with n-tetrabutylammonium hexafluorophosphate (TBAPF6) as background electrolyte at T = 294.15 K. The half-wave potentials (E 1/2), the diffusion coefficients (D), and the heterogeneous electron-transfer rate constants (k s) were derived. The activation free energies for electron transfer (ΔG exp ) were experimentally determined and compared with the theoretical values (ΔG cal ). The electron-transfer process was reversible and diffusion-controlled in all investigated solvent mixtures. The changes on the metal–ligand bond lengths upon electron transfer were almost insignificant. The E 1/2 values were shifted to less positive potentials with the increase of the ACN content. The k s values obtained on Pt electrode were slightly larger compared to k s measured on G-C electrode, while in both cases the k s values were diminished with the enrichment of the mixtures in ACN. The EIS spectra confirmed that the rate-determining step in the whole process is the diffusion of the FeCp2 species and thus the process can be properly characterized as diffusion-controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seibold EA, Sutton LE (1955) J Chem Phys 23:1967

    Article  CAS  Google Scholar 

  2. Geiger WE (1990) Organometallic radical processes. Elsevier, Amsterdam (and references therein)

    Google Scholar 

  3. Zhu T, Su CH, Lemke BK, Wilson LJ, Kadish KM (1983) Inorg Chem 22:2527

    Article  CAS  Google Scholar 

  4. Kadish KM, Su CH (1983) J Am Chem Soc 105:177

    Article  CAS  Google Scholar 

  5. Gritzner G, Kuta J (1982) J Pure Appl Chem 54:1527

    Article  Google Scholar 

  6. Diggle JW, Parker AJ (1973) Electrochim Acta 18:975

    Article  CAS  Google Scholar 

  7. Saji T, Maruyama Y, Aoyagvi S (1978) J Electroanal Chem 86:219

    Article  CAS  Google Scholar 

  8. Bond AM, Henderson TLE, Mann DR, Mann TF, Thormann W, Zoski CG (1988) Anal Chem 60:1878

    Article  CAS  Google Scholar 

  9. Pournaghi-Azar MH, Ojani R (1994) Electrochim Acta 39:953

    Article  CAS  Google Scholar 

  10. Kadish KM, Ding JQ, Malinski T (1984) Anal Chem 56:1741

    Article  CAS  Google Scholar 

  11. Kamau GN, Saccucci TM, Gounilli G, Nassar AEF, Rusling JF (1994) Anal Chem 66:994

    Article  CAS  Google Scholar 

  12. Daschbach J, Blackwood D, Pons JW, Pons S (1987) J Electroanal Chem 237:269

    Article  CAS  Google Scholar 

  13. Crooks RM, Bard AJ (1988) J Electroanal Chem 243:117

    Article  CAS  Google Scholar 

  14. Bond AM, Oldham KB, Snook GA (2000) Anal Chem 72:3492

    Article  CAS  Google Scholar 

  15. Wightman RM (1981) Anal Chem 53:1125

    Article  Google Scholar 

  16. Howell JO, Wightman RM (1984) Anal Chem 56:524

    Article  CAS  Google Scholar 

  17. Daniele S, Baldo MA, Bragato C (1999) Electrochem Commun 1:37

    Article  CAS  Google Scholar 

  18. Zara AJ, Machado SS, Bulhoes LOS, Benedetti AV, Rabockai T (1987) J Electroanal Chem 221:165

    Article  CAS  Google Scholar 

  19. Quirk PF, Kratochvil B (1970) Anal Chem 42:535

    Article  CAS  Google Scholar 

  20. Hartl F, Mahabiersing T, Le Floch P, Mathey F, Ricard L, Rosa P, Záliš S (2003) Inorg Chem 42:4442

    Article  CAS  Google Scholar 

  21. CRC (2003/2004) Handbook of chemistry and physics, 84th ed. CRC Press, Boca Raton, FL

  22. Randles JEB (1948) Trans Faraday Soc 44:327

    Article  CAS  Google Scholar 

  23. Comminges C, Barhdadi R, Laurent M, Troupel M (2006) J Chem Eng Data 51:680

    Article  CAS  Google Scholar 

  24. Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39:3772

    Article  CAS  Google Scholar 

  25. Fischer DW (1964) Acta Cryst 17:619

    Google Scholar 

  26. Nicholson RS (1965) Anal Chem 37:1351

    Article  CAS  Google Scholar 

  27. Kanatharana P, Spritzer MS (1974) Anal Chem 46:958

    Article  CAS  Google Scholar 

  28. Bond AM, Henderson TLE, Thorman WJ (1986) J Phys Chem 90:2911

    Article  CAS  Google Scholar 

  29. Marcus RA (1965) J Chem Phys 43:679

    Article  CAS  Google Scholar 

  30. Marcus RA (1968) Electrochim Acta 13:995

    Article  CAS  Google Scholar 

  31. Bockris JOM, Khan SUM (1979) Quantum electrochemistry. Plenum Press, New York

    Google Scholar 

  32. Goldfarb DL, Longinotti MP, Corti HR (2001) J Solution Chem 30:307

    Article  CAS  Google Scholar 

  33. Reynolds BB, Kraus CA (1948) J Am Chem Soc 70:1709

    Article  CAS  Google Scholar 

  34. Bernstein T, Herbstein FH (1968) Acta Cryst B24:1640

    Google Scholar 

  35. Halle JM (1971) Reactions of molecules at electrodes. Wiley, London

    Google Scholar 

  36. Mohran HS (2005) Am J Appl Sci 2:1629

    Article  CAS  Google Scholar 

  37. Rashwan F (2005) Am J Appl Sci 2:1595

    Article  CAS  Google Scholar 

  38. Kim DJ, Ryu HS, Kim IP, Cho KK, Nam TH, Kim KW, Ahn JH, Ahn HJ (2007) Phys Scr T129:70

    Article  CAS  Google Scholar 

  39. Marcus Y (1984) J Solution Chem 13:599

    Article  CAS  Google Scholar 

  40. Baur JE, Wightman RM (1991) J Electroanal Chem 305:73

    Article  CAS  Google Scholar 

  41. Sharp M (1983) Electrochim Acta 28:301

    Article  CAS  Google Scholar 

  42. Moharram YI (2006) J Electroanal Chem 587:115

    Article  CAS  Google Scholar 

  43. Kuwana T, Bublitz DE, Hoh G (1960) J Am Chem Soc 82:5811

    Article  CAS  Google Scholar 

  44. Sharp M, Peterson M, Edström K (1980) J Electroanal Chem 109:271

    Article  CAS  Google Scholar 

  45. Tsierkezos NG (2007) J Solution Chem 36:289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. D. Schneider (TU Ilmenau).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsierkezos, N.G., Ritter, U. Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. J Appl Electrochem 40, 409–417 (2010). https://doi.org/10.1007/s10800-009-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-0011-3

Keywords

Navigation