Skip to main content
Log in

The use of macrocyclic compounds as electrocatalysts in fuel cells

  • Review Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Macrocyclic compounds such as metallophthalocyanines demonstrated good catalytic activities toward electrochemical reactions. The characteristics of the central cations in metallophthalocyanines significantly influenced their electrocatalytic activities. Addition of conjugated polymers in electrodes improved the electrocatalytic activity by enhancing the electric conductivity. The electrocatalytic activities of macrocyclic compounds could be further improved by heat treatment. The formation of metallic clusters or metal containing organic fragments after pyrolyzing played an important role in improving electrocatalytic activities of macrocyclic compounds. It was considered that macrocyclic compounds might be functioned as a precursor to obtain well-distributed metallic clusters or metal containing organic fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang B (2005) J Power Sources 152:1–15

    Article  CAS  Google Scholar 

  2. Ohno S, Yagyuu K, Nakatsuji K, Komori F (2004) Surf Sci 554:183–192

    Article  CAS  Google Scholar 

  3. Lescop B, Jay JP, Fanjoux G (2004) Surf Sci 548:83–94

    Article  CAS  Google Scholar 

  4. Mentus SV (2004) Electrochim Acta 50:27–32

    Article  CAS  Google Scholar 

  5. Limoges BR, Stanis RJ, Turner JA, Herring AM (2005) Electrochim Acta 50:1169–1179

    Article  CAS  Google Scholar 

  6. Hayashi M, Uemura H, Shimanoe K, Miura N, Yamazoe N (2004) J Electrochem Soc 151:A158–A163

    Article  CAS  Google Scholar 

  7. Medard C, Lefevre M, Dodelet JP, Jaouen F, Lindbergh G (2006) Electrochim Acta 51:3202–3213

    Article  CAS  Google Scholar 

  8. Bouwkamp-Wijnoltz AL, Visscher W, van Veen JAR, Tang SC (1999) Electrochim Acta 45:379–386

    Article  CAS  Google Scholar 

  9. Cheng H, Scott K, Lovell K (2006) Fuel Cells 6:367–375

    Article  CAS  Google Scholar 

  10. Liu BH, Suda S (2007) J Power Sources 164:100–104

    Article  CAS  Google Scholar 

  11. Feng RX, Dong H, Yang YD, Ai XP, Cao YL, Yang HX (2005) Electrochem Commun 7:449–452

    Article  CAS  Google Scholar 

  12. Wang YG, Xia YY (2006) Electrochem Commun 8:1775–1778

    Article  CAS  Google Scholar 

  13. Chatenet M, Micoud F, Roche I, Chainet E, Vondrák J (2006) Electrochim Acta 51(25):5452–5458

    Article  CAS  Google Scholar 

  14. Inabe T, Tajima H (2004) Chem Rev 104:5503–5533

    Article  CAS  Google Scholar 

  15. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Nature 347:S539–S541

    Article  Google Scholar 

  16. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Science 258:1474–1476

    Article  CAS  Google Scholar 

  17. Sirringhaus H (2005) Adv Mater 1:2411–2425

    Article  Google Scholar 

  18. Diaz AF, Kanazawa KK, Gardini GP (1979) J Chem Soc Chem Commun 14:635–636

    Article  Google Scholar 

  19. Kanazawa KK, Diaz AF, Geiss RH, Gill WD, Kwak JF, Logan JA, Rabolt JF, Street GB (1979) J Chem Soc Chem Commun 19:854–855

    Article  Google Scholar 

  20. Diaz AF, Castillo JI (1980) J Chem Soc Chem Commun 9:378–397

    Google Scholar 

  21. Diaz AF, Lee WY, Logan A, Green DC (1980) J Electroanal Chem Interfacial Electrochem 108:377–380

    Article  CAS  Google Scholar 

  22. Grant PM, Batra IP (1980) Synth Met 1:193–212

    Article  CAS  Google Scholar 

  23. Kanazawa KK, Diaz AF, Gill WD, Grant PM, Street GB, Gardini GP, Kwak JF (1980) Synth Met 1:329–336

    Article  CAS  Google Scholar 

  24. Smela E (1999) J Micromech Microeng 9:1–18

    Article  CAS  Google Scholar 

  25. Tomoda H, Saito S, Shiraishi S (1983) Chem Lett 3:313–316

    Article  Google Scholar 

  26. Wohrle D, Schnurpfeil G, Knothe G (1992) Dyes Pigment 18:91–102

    Article  Google Scholar 

  27. Lee CH, Ng DKP (2002) Tetrahedron Lett 43:4211–4214

    Article  CAS  Google Scholar 

  28. Chauhan SMS, Agarwal S, Kumari P (2007) Synth Commun 37:2917–2925

    Article  CAS  Google Scholar 

  29. Liu W, Lee CH, Li HW, Lam CK, Wang JZ, Mak TCW, Ng DKP (2002) Chem Commun 6:628–629

    Article  Google Scholar 

  30. Özcesmeci I, Okur AI, Gul A (2007) Dyes Pigment 75:761–765

    Article  Google Scholar 

  31. Uchida H, Yoshiyama H, Reddy PY, Nakamura S, Toru T (2003) Synlett 2083–2085

  32. Alzeer J, Roth PJC, Luedtke NW (2009) Chem Commun 1970–1971

  33. Zhan HB, Wang MQ, Chen WZ (2002) Mater Lett 55:97–103

    Article  CAS  Google Scholar 

  34. Jasinski R (1964) Nature 201:1212–1213

    Article  CAS  Google Scholar 

  35. Jasinski R (1965) J Electrochem Soc 112:526–528

    Article  CAS  Google Scholar 

  36. Randin JP (1974) Electrochim Acta 19:83–85

    Article  CAS  Google Scholar 

  37. Beck F (1977) J Appl Electrochem 7:239–245

    Article  CAS  Google Scholar 

  38. Zagal JH (2006) In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-Macrocyclic metal complexes. Springer, New York, pp 41–82

    Chapter  Google Scholar 

  39. Zagal JH, Gulppi M, Isaacs M, Cardenas-Jiron G, Aguirre MJS (1998) Electrochim Acta 44:1349–1357

    Article  CAS  Google Scholar 

  40. Van der Putten A, Elzing A, Visscher W, Barendrecht E (1987) J Electroanal Chem 221:95–104

    Article  Google Scholar 

  41. Zagal J, Paez M, Tanaka AA, dos Santos JR, Linkous CA (1992) J Electroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  42. Wiesener K, Ohms D, Neumann V, Franke R (1989) Mater Chem Phys 22:457–475

    Article  CAS  Google Scholar 

  43. Lu YH, Reddy RG (2007) Electrochim Acta 52:2562–2569

    Article  CAS  Google Scholar 

  44. Ma JF, Wang J, Liu YN (2007) J Power Sources 172:220–224

    Article  CAS  Google Scholar 

  45. Scherson DA, Yao SB, Yeager EB, Eldridge J, Kordesch ME, Hoffman RW (1983) J Phys Chem 87:932–943

    Article  CAS  Google Scholar 

  46. Scherson DA, Fierro C, Yeager EB, Kordesch ME, Eldridge J, Hoffman RW, Barnes A (1984) J Electroanal Chem 169:287–302

    Article  CAS  Google Scholar 

  47. Ma JF, Liu YN, Zhang P, Wang J (2008) Electrochem Commun 10:100–102

    Article  CAS  Google Scholar 

  48. Anderson AB, Sidik RA (2004) J Phys Chem B 108:5031–5035

    Article  CAS  Google Scholar 

  49. Brink FVD, Visscher W, Barendrecht E (1984) J Electroanal Chem 172:301–325

    Article  Google Scholar 

  50. Baranton S, Coutanceau C, Roux C, Hahn F, Légera J-M (2005) J Electroanal Chem 577:223–234

    Article  CAS  Google Scholar 

  51. Geraldo D, Linares C, Chen YY, Ureta-Zanartu S, Zagal JH (2002) Electrochem Commun 4:182–187

    Article  CAS  Google Scholar 

  52. Ma WT, Wu JJ, Shen CH, Tang HL, Pan M (2008) J Appl Electrochem 38:875–879

    Article  CAS  Google Scholar 

  53. Bett JS, Kunz HR, Aldykiewicz AJ, Fenton JM, Bailey WF, McGrath DV (1998) Electrochim Acta 43(24):3645–3655

    Article  CAS  Google Scholar 

  54. Wu JJ, Tang HL, Pan M, Wan ZH, Ma WT (2009) Electrochim Acta 54:1473–1477

    Article  CAS  Google Scholar 

  55. McNeill R, Siudak R, Wardlaw JH, Weiss DE (1963) Aust J Chem 16:1056–1075

    Article  CAS  Google Scholar 

  56. Bolto BA, Mcneill R, Weiss DE (1963) Aust J Chem 16:1090–1103

    Article  CAS  Google Scholar 

  57. MacDiarmid AJ (1997) Synth Met 84:27–34

    Article  CAS  Google Scholar 

  58. Eofinger S, van Ooji WJ, Ridgway TH (1998) J Appl Polym Sci 61:1503–1515

    Google Scholar 

  59. Liu YC, Hwang BJ, Hsu WC (2002) Sens Actuators B Chem 87:304–308

    Article  Google Scholar 

  60. Xu L, Chen W, Mulchandani A, Yan Y (2005) Angew Chem Int Ed 44:6009–6012

    Article  CAS  Google Scholar 

  61. Bocchi V, Gardini GP (1986) J Chem Soc Chem Commun 2:148

    Article  Google Scholar 

  62. Rapi S, Bocchi V, Gardini GP (1988) Synth Met 24:217–221

    Article  CAS  Google Scholar 

  63. Chao TH, March J (1988) J Polym Sci A Polym Chem 26:743–753

    Article  CAS  Google Scholar 

  64. Castillo-Ortega MM, Inoue MB, Inoue M (1989) Synth Met 28:C65–C70

    Article  CAS  Google Scholar 

  65. Omastova M, Pionteck J, Trchova M (2003) Synth Met 135–136:437–438

    Article  Google Scholar 

  66. Kudoh Y, Akami K, Matsuya Y (1998) Synth Met 95:191–196

    Article  CAS  Google Scholar 

  67. Toshima N, Tayanagi J (1990) Chem Lett 8:1369–1372

    Article  Google Scholar 

  68. Toshima N, Ihata O (1996) Synth Met 79:165–172

    Article  CAS  Google Scholar 

  69. Dias HVR, Fianchini M, Rajapakse RMG (2006) Polymer 47(21):7349–7354

    Article  CAS  Google Scholar 

  70. Kim HS, Park DH, Lee YB, Kim DC, Kim HJ, Kim J, Joo J (2007) Synth Met 157:910–913

    Article  CAS  Google Scholar 

  71. Mokrane S, Makhloufi L, Hammache H, Saidani B (2001) J Solid State Electrochem 5:339–347

    Article  CAS  Google Scholar 

  72. Singh RN, Malviya M, Chartier P (2007) J New Mater Electrochem Syst 10(3):181–186

    CAS  Google Scholar 

  73. Bashyam R, Zelenay P (2006) Nature 443:63–66

    Article  CAS  Google Scholar 

  74. Yuasa M, Yamaguchi A, Itsuki H, Tanaka K, Yamamoto M, Oyaizu K (2005) Chem Mater 17:4278–4281

    Article  CAS  Google Scholar 

  75. Qin HY, Liu ZX, Yin WX, Zhu JK, Li ZP (2008) J Power Sources 185:909–912

    Article  CAS  Google Scholar 

  76. Asazawa K, Yamada K, Tanaka H, Oka A, Taniguchi M, Kobayashi T (2007) Angew Chem Int Ed 46:8024–8027

    Article  CAS  Google Scholar 

  77. Qin HY, Liu ZX, Ye LQ, Zhu JK, Li ZP (2009) J Power Sources 192:385–390

    Article  CAS  Google Scholar 

  78. Rajesh B, Thampi KR, Bonard JM, Mathieu HJ, Xanthopoulosd N, Viswanathan B (2003) Chem Commun (16):2022–2023

  79. Feng CH, Chan PCH, Hsing IM (2007) Electrochem Commun 9:89–93

    Article  CAS  Google Scholar 

  80. Zagal JH (2003) In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells, electrocatalysis, vol 2. Wiley, New York (Chapter 37)

    Google Scholar 

  81. Gojkovic SL, Gupta S, Savinell RF (1999) J Electroanal Chem 462:63–72

    Article  CAS  Google Scholar 

  82. Cheng H, Scott K (2006) J Electroanal Chem 596:117–123

    Article  CAS  Google Scholar 

  83. Venkataraman R, Kunz HR, Fenton JM (2004) J Electrochem Soc 151(5):A703–A709

    Article  CAS  Google Scholar 

  84. Convert P, Coutanceau C, Crouigneau P, Gloagen F, Lamy C (2001) J Appl Electrochem 31:945–952

    Article  CAS  Google Scholar 

  85. Niu L, Li QH, Wei FH, Wu SX, Liu PP, Cao XL (2005) J Electroanal Chem 578:331–337

    Article  CAS  Google Scholar 

  86. Santhosh P, Gopalan A, Lee K-P (2006) J Catal 238:177–185

    Article  CAS  Google Scholar 

  87. Baranton S, Coutanceau C, Garnier E, Leger J-M (2006) J Electroanal Chem 590:100–110

    Article  CAS  Google Scholar 

  88. Ladouceur M, Lalande G, Guay D, Dodelet JP, Dignard-Bailey L, Trudeau ML, Schulz R (1993) J Electrochem Soc 140:1974–1981

    Article  CAS  Google Scholar 

  89. Maldonado S, Stevenson KJ (2004) J Phys Chem B 108:11375–11383

    Article  CAS  Google Scholar 

  90. Fabjan C, Frithum G, Hartl H (1990) Ber Bunsenges Phys Chem 94:937

    CAS  Google Scholar 

  91. Seeliger W, Hamnett A (1992) Electrochim Acta 37:763

    Article  CAS  Google Scholar 

  92. Artyushkova K, Levendosky S, Atanassov P, Fulghum J (2007) Top Catal 46:263–275

    Article  CAS  Google Scholar 

  93. Weng LT, Bertrand P, Lalande G, Guay D, Dodelet JP (1995) Appl Surf Sci 84:9–21

    Article  CAS  Google Scholar 

  94. Tamizhamani G, Dodelet JP, Guay D, Laland G, Capuano GA (1994) J Electrochem Soc 141:41–45

    Article  Google Scholar 

  95. Ladouceur M, Lalande G, Guay D (1993) J Electrochem Soc 140(7):1974–1981

    Article  CAS  Google Scholar 

  96. Alves MCM, Dodelet JP, Guay D, Ladouceur M, Tourillon G (1992) J Phys Chem 96:10898–10905

    Article  CAS  Google Scholar 

  97. Zhang HJ, Yuan XX, Wen W, Zhang DY, Sun LL, Jiang QZ, Ma ZF (2009) Electrochem Commun 11:206–208

    Article  Google Scholar 

  98. Sawai K, Suzuki N (2004) J Electrochem Soc 151:A682–A688

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Hi-tech Research and Development Program of China (863), grant no. 2007AA05Z144, Doctoral Fund (20070335003) from Education Ministry of China, and the National Natural Science Foundation of China (20976156), (50971114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z.P., Liu, B.H. The use of macrocyclic compounds as electrocatalysts in fuel cells. J Appl Electrochem 40, 475–483 (2010). https://doi.org/10.1007/s10800-009-0028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-0028-7

Keywords

Navigation