Skip to main content

Advertisement

Log in

Pulsed electrokinetic removal of Cd and Zn from fine-grained soil

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pulsed electrokinetics studies were carried out to optimize the removal of Zn and Cd from fine-grained soils and to observe the effects of varying the pulse frequency, pulse time ratio (on/off), and DC voltage gradient. Existing forms of heavy metals in the soil matrix were determined using a sequential extraction method. The strongly bound fraction (bound to organic matter and residuals) that is difficult to remove from the soil matrix comprised 74 and 62% of the total Zn and Cd, respectively. In the electrokinetic remediation experiments, MgSO4 was employed to increase the ionic strength of the soil for 2 weeks. Transportation of heavy metals was influenced by the frequency, pulse ratio, and the voltage gradient of the pulsed electric field. Extraction efficiency of Zn and Cd near the anode was correlated positively with the voltage gradient at a given pulse and ratio. A high pulse frequency (1,800 cycles/h) enhanced the removal efficiency of the heavy metals compared to a low pulse frequency (1,200 cycles/h) at a supplied voltage gradient of 1 V/cm. Although pulsed electrokinetics was more effective in extracting and desorbing ions near the anode than conventional electrokinetics, its ability to transport heavy metals from the anode to the cathode was relatively small. Total removals with pulsed electrokinetics were 21–31% for Zn and 18–24% for Cd. In summary, pulsed electrokinetics can enhance removal efficiency of heavy metals and is beneficial with regard to electrical energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choi HD, Park SW, Ryu BG, Cho JM, Kim KJ, Baek K (2009) Environ Eng Res 14(3):153

    Article  Google Scholar 

  2. Jeon CS, Baek K, Park JK, Oh YK, Kim SD (2009) J Hazard Mater 163(2–3):804

    Article  CAS  Google Scholar 

  3. Baek K, Kim DH, Park SW, Ryu BG, Bajargal T, Yang JS (2009) J Hazard Mater 161(1):457

    Article  CAS  Google Scholar 

  4. Kim DH, Ryu BG, Park SW, Seo CI, Baek K (2009) J Hazard Mater 165:501

    Article  CAS  Google Scholar 

  5. Lee CG, Chon HT, Jung MC (2001) Geochem 16:1377

    Article  CAS  Google Scholar 

  6. Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) J Hazard Mater 40(2):117

    Article  CAS  Google Scholar 

  7. Yeung AT, Hsu CN (2005) J Environ Eng-ASCE 131(2):298

    Article  CAS  Google Scholar 

  8. Nystrom GM, Ottosen LM, Villumsen A (2004) Eng Geol 77:349

    Article  Google Scholar 

  9. Reddy KR, Danda S, Saichek RE (2004) J Environ Eng-ASCE 130(11):1357

    Article  CAS  Google Scholar 

  10. Reddy KR, Saichek RE (2004) J Environ Sci Health A-Toxic/Hazard Subst Environ Eng 39(5):1189

    Google Scholar 

  11. Kim DH, Jeon CS, Baek k, Ko SH, Yang JS (2009) J Hazard Mater 161:565

    Article  CAS  Google Scholar 

  12. Park SW, Lee JY, Yang JS, Kim KJ, Baek K (2009) J Hazard Mater 169(1–3):1168

    Article  CAS  Google Scholar 

  13. Ottosen LM, Hansen HK, Laursen S, Villumsen (1997) Environ Sci Technol 31:1711

    Article  CAS  Google Scholar 

  14. Reddy KR, Chinthamreddy S (2003) J Geotech Geoenviron-ASCE 129(3):263

    Article  CAS  Google Scholar 

  15. Cho JM, Kim KJ, Chung KY, Hyun S, Baek K (2009) Sep Sci Technol 44(10):2371

    Article  CAS  Google Scholar 

  16. Eykholt G, Daniel D (1994) J Geotech Eng 120(5):797

    Article  Google Scholar 

  17. Acar YB, Alshawabkeh AN (1993) Environ Sci Technol 27(13):2638

    Article  CAS  Google Scholar 

  18. Reddy KR, Xu CY, Chinthamreddy S (2001) J Hazard Mater 84(2–3):279

    Article  CAS  Google Scholar 

  19. Ryu BG, Park SW, Baek K, Yang JS (2009) Sep Sci Technol 44(10):2421

    Article  CAS  Google Scholar 

  20. Rojo A, Hansen HK, Ottosen LM (2006) Miner Eng 19:500

    Article  CAS  Google Scholar 

  21. Zhou DM, Deng CF, Cang L, Alshawabkeh AN (2005) Chemosphere 61(4):519

    Article  CAS  Google Scholar 

  22. Zhou DM, Deng CF, Cang L (2004) Chemosphere 56(3):265

    Article  CAS  Google Scholar 

  23. Pazos M, Sanroman MA, Cameselle C (2005) Chemosphere 62:817

    Article  CAS  Google Scholar 

  24. Hansen HK, Rojo A (2007) Electrochim Acta 52(10):3399

    Article  CAS  Google Scholar 

  25. Kornilovich B, Mishchuk N, Abbruzzese K, Pshinko G, Klishchenko R (2005) Colloid Surface A-Physicochem Eng Asp 265(1–3):114

    Article  CAS  Google Scholar 

  26. Tessier A, Campbell P, Bisson M (1979) Anal Chem 51(7):844

    Article  CAS  Google Scholar 

  27. Mitchell JK (1993) Fundamentals of soil behavior, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Institute of Environmental Technology and Industry through GAIA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Baek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, BG., Yang, JS., Kim, DH. et al. Pulsed electrokinetic removal of Cd and Zn from fine-grained soil. J Appl Electrochem 40, 1039–1047 (2010). https://doi.org/10.1007/s10800-009-0046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-0046-5

Keywords

Navigation