Skip to main content
Log in

Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, was synthesized via a “mixed oxalate” method, and its structural and electrochemical properties were compared with the same material synthesized by the sol–gel method. X-ray diffraction (XRD) shows that the synthesized powders have a layered O3–LiCoO2-type structure with the R-3m symmetry. X-ray photoelectron spectroscopy (XPS) indicates that in the above material, Ni and Mn exist in the oxidation states of +2 and +4, respectively. The layered material exhibits an excellent electrochemical performance. Its discharge capacity increases gradually from the initial value of 228 mA hg−1 to a stable capacity of over 260 mA hg−1 after the 10th cycle. It delivers a larger capacity of 258 mA hg−1 at the 30th cycle. The dQ/dV curves suggest that the increasing capacity results from the redox-reaction of Mn4+/Mn3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Numata K, Sakaki C, Yamanaka S (1999) Solid State Ion 117:257

    Article  CAS  Google Scholar 

  2. Grincourt Y, Stoery C, Davidson IJ (2001) J Power Sour 97:711

    Article  Google Scholar 

  3. Balasubramanian M, Mcbreen J, Davidson IJ et al (2002) J Electrochem Soc 149:A176

    Article  CAS  Google Scholar 

  4. Lu ZH, MacNeil DD, Dahn JR (2001) Electrochem Solid State Lett 4:A191

    Article  CAS  Google Scholar 

  5. Barkhouse DAR, Dahn JR (2005) J Electrochem Soc 152:A746

    Article  CAS  Google Scholar 

  6. Johnson CS, Li N, Lefief C et al (2007) Electrochem Commun 9:787

    Article  CAS  Google Scholar 

  7. Lu ZH, Dahn JR (2002) J Electrochem Soc 149:A815

    Article  CAS  Google Scholar 

  8. Armstrong R, Holzapfel M, Bruce PG et al (2006) J Am Chem Soc 128:8694

    Article  CAS  Google Scholar 

  9. Hwang BJ, Wang CJ, Chen CH et al (2005) J Power Sour 146:658

    Article  CAS  Google Scholar 

  10. Lu Z, Dahn JR (2001) J Electrochem Soc 148:A237

    Article  CAS  Google Scholar 

  11. Kim JS, Johnson CS, Vaughey JT et al (2004) Chem Mater 16:1996

    Article  CAS  Google Scholar 

  12. Jiang J, Dahn JR (2005) Electrochim Acta 50:4778

    Article  CAS  Google Scholar 

  13. Meng YS, Ceder G, Shao-Horn Y et al (2005) Chem Mater 17:2386

    Article  CAS  Google Scholar 

  14. Cho TH, Park SM, Yoshio M et al (2005) J Power Sour 142:306

    Article  CAS  Google Scholar 

  15. Kang YJ, Kim JH, Lee SW et al (2005) Electrochim Acta 50:4784

    Article  CAS  Google Scholar 

  16. Lee KS, Myung ST, Moon JS et al (2008) Electrochim Acta 53:6033

    Article  CAS  Google Scholar 

  17. Roisnel J, Rodriguez-Carjaval J (2000) Fullprof manual. Institut Laue-Langevin, Grenoble

    Google Scholar 

  18. Lu Z, Chen Z, Dahn JR (2003) Chem Mater 15:3214

    Article  CAS  Google Scholar 

  19. Lu Z, Beaulieu LY, Donaberger RA (2002) J Electrochem Soc 149:A778

    Article  CAS  Google Scholar 

  20. Hong YS, Park YJ, Ryu KS et al (2005) Solid State Ion 176:1035

    Article  CAS  Google Scholar 

  21. Ryu JH, Park BJ, Park YJ et al (2009) J Appl Electrochem 39:1059

    Article  CAS  Google Scholar 

  22. Liu HS, Li J, Zhang ZR et al (2004) Electrochim Acta 49:151

    Google Scholar 

  23. Carley AF, Jackson SD, O’Shea JN et al (1999) Surf Sci 440:L868

    Article  CAS  Google Scholar 

  24. Yoncheva M, Stoyanova R, Zhecheva E et al (2009) J Alloys Compd 475:96

    Article  CAS  Google Scholar 

  25. Sun Y, Shiosaki Y, Xia Y et al (2006) J Power Sour 159:1353

    Article  CAS  Google Scholar 

  26. Yu L, Qiu W, Lian F et al (2008) Mater Lett 62:3010

    Article  CAS  Google Scholar 

  27. Yu L, Qiu W, Lian F et al (2009) J Alloys Compd 471:317

    Article  CAS  Google Scholar 

  28. Hong YS, Park YJ, Ryu KS et al (2004) J Mater Chem 14:1424

    Article  CAS  Google Scholar 

  29. Yu LH, Yang HX, Ai XP et al (2005) J Phys Chem B 109:1148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports from the National Basic Research Program (2009CB220100) and BIT Basic Research Fund (No. 20070542004). We also would like to thank Dr. Guangyao Liu of Institute of Physics, Chinese Academy of Sciences, for his contribution to the Rietveld refinement of the XRD pattern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuefeng Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F., Lu, H., Su, Y. et al. Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries. J Appl Electrochem 40, 783–789 (2010). https://doi.org/10.1007/s10800-009-0057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-0057-2

Keywords

Navigation