Skip to main content

Advertisement

Log in

Electrochemical process for the treatment of landfill leachate

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the anodic oxidation of a real leachate from an old municipal solid waste landfill has been studied using an electrolytic flow cell equipped with a lead dioxide (PbO2) anode and stainless steel as the cathode. The influence of several operation parameters such as (i) the applied current (from 0.5 to 3 A), (ii) liquid flow rate (from 50 to 420 L h−1), (iii) temperature (from 25 to 50 °C), and (iv) pH (from 3.5 to 8.2) on the COD removal rate, current efficiency, and energy consumption has been evaluated. The galvanostatic electrolyses always yielded COD values below the discharge limit (COD <160 mg L−1); the COD removal rate increased with rising applied current, solution pH, and temperature, whereas it remained almost unaffected by the recirculation flow rate. These results indicate that the organic compounds were mainly removed by their indirect oxidation by the active chlorine generated from chlorides oxidation. The specific energy consumption necessary to reduce the organic load to below the disposal limit was 90 kWh m−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) J Hazard Mater 150:468

    Article  CAS  Google Scholar 

  2. Hosomi M, Matsusige K, Inamori Y, Sudo R, Yamada K, Yoshino Z (1989) Water Sci Technol 21:1651

    CAS  Google Scholar 

  3. Li XZ, Zhao QL (2001) Chemosphere 44:37

    Article  CAS  Google Scholar 

  4. Rubio J, Souza ML, Smith RW (2002) Miner Eng 15:139

    Article  CAS  Google Scholar 

  5. Tatsi AA, Zouboulis AI, Matis KA, Samaras P (2003) Chemosphere 53:737

    Article  CAS  Google Scholar 

  6. Rivas FJ, Beltran FJ, Gimeno O, Frades J, Carvalho F (2006) J Hazard Mater 131:170

    Article  CAS  Google Scholar 

  7. Rivas FJ, Beltran FJ, Carvalho F, Alvarez PM (2005) Ind Eng Chem Res 44:749

    Article  CAS  Google Scholar 

  8. Ushikoshi K, Kobayashi T, Uematsu K, Toji A, Kojima A, Matsumoto K (2002) Desalination 150:121

    Article  CAS  Google Scholar 

  9. DiPalma L, Ferrantelli P, Merli C, Petrucci E (2002) Waste Manag 22:951

  10. Baig S, Liechti PA (2001) Water Sci Technol 43:197

    CAS  Google Scholar 

  11. Schulte P, Bayer A, Kuhn F, Luy T, Volkmer M (1995) Ozone Sci Eng 17:119

    Article  CAS  Google Scholar 

  12. Sun J, Li X, Feng J, Tian X (2009) Water Res 43:4363

    Article  CAS  Google Scholar 

  13. Deng Y (2009) Int J Environ Waste Manag 4:366

    Article  CAS  Google Scholar 

  14. Panizza M, Cerisola G (2009) Chem Rev 109:6541

    Article  CAS  Google Scholar 

  15. Brillas E, Sirés I, Oturan MA (2009) Chem Rev 109:6570

    Article  CAS  Google Scholar 

  16. Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA (2000) Waste Manag 20:569

    Article  CAS  Google Scholar 

  17. Szpyrkowicz L, Radaelli M (2007) Separ Sci Technol 42:1493

    Article  CAS  Google Scholar 

  18. Panizza M, Cerisola G (2004) Environ Sci Technol 38:5470

    Article  CAS  Google Scholar 

  19. Saez C, Panizza M, Rodrigo MA, Cerisola G (2007) J Chem Technol Biotechnol 82:575

    Article  CAS  Google Scholar 

  20. Panizza M, Cerisola G (2007) Appl Catal B-Environ 75:95

    Article  CAS  Google Scholar 

  21. Panizza M, Cerisola G (2008) Ind Eng Chem Res 47:6816

    Article  CAS  Google Scholar 

  22. Faouzi M, Canizares P, Gadri A, Lobato J, Nasr B, Paz R, Rodrigo MA, Saez C (2006) Electrochim Acta 52:325

    Article  CAS  Google Scholar 

  23. Sirés I, Brillas E, Cerisola G, Panizza M (2008) J Electroanal Chem 613:151

    Article  Google Scholar 

  24. Panizza M, Sirés I, Cerisola G (2008) J Appl Electrochem 38:923

    Article  CAS  Google Scholar 

  25. Flox C, Cabot PL, Centellas F, Garrido JA, Rodriguez RM, Arias C, Brillas E (2006) Chemosphere 64:892

    Article  CAS  Google Scholar 

  26. Ozcan A, Sahin Y, Koparal AS, Oturan MA (2008) J Hazard Mater 153:718

    Article  Google Scholar 

  27. Ozcan A, Sahin Y, Oturan MA (2008) Chemosphere 73:737

    Article  Google Scholar 

  28. Deng Y, Englehardt JD (2007) Waste Manag 27:380

    Article  CAS  Google Scholar 

  29. Li T, Li X, Chen J, Zhang G, Wang H (2007) Water Environ Res 79:514

    Article  CAS  Google Scholar 

  30. Chiang L-C, Chang J-E, Wen T-C (1995) Water Res 29:671

    Article  CAS  Google Scholar 

  31. Chiang L-C, Chang J-E, Chung C-T (2001) Environ Eng Sci 18:369

    Article  CAS  Google Scholar 

  32. Moraes PB, Bertazzoli R (2005) Chemosphere 58:41

    Article  CAS  Google Scholar 

  33. Tauchert E, Schneider S, de Morais JL, Peralta-Zamora P (2006) Chemosphere 64:1458

    Article  CAS  Google Scholar 

  34. Feki F, Aloui F, Feki M, Sayadi S (2009) Chemosphere 75:256

    Article  CAS  Google Scholar 

  35. Vlyssides AG, Karlis PK, Mahnken G (2003) J Appl Electrochem 33:155

    Article  CAS  Google Scholar 

  36. Nageswara Rao N, Rohit M, Nitin G, Parameswaran PN, Astik JK (2009) Chemosphere 76:1206

    Article  CAS  Google Scholar 

  37. Bashir MJK, Isa MH, Kutty SRM, Awang ZB, Aziz HA, Mohajeri S, Farooqi IH (2009) Waste Manag 29:2534

    Article  CAS  Google Scholar 

  38. Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Environ Sci Technol 32:3570

    Article  CAS  Google Scholar 

  39. Anglada A, Urtiaga A, Ortiz I (2009) Environ Sci Technol 43:2035

    Article  CAS  Google Scholar 

  40. Cabeza A, Urtiaga A, Rivero M-J, Ortiz I (2007) J Hazard Mater 144:715

    Article  CAS  Google Scholar 

  41. Cabeza A, Urtiaga AM, Ortiz I (2007) Ind Eng Chem Res 46:1439

    Article  CAS  Google Scholar 

  42. Urtiaga A, Rueda A, Anglada A, Ortiz I (2009) J Hazard Mater 166:1530

    Article  CAS  Google Scholar 

  43. Panizza M, Cerisola G (2003) Electrochim Acta 48:3491

    Article  CAS  Google Scholar 

  44. Sirés I, Low CTJ, Ponce-de-León C, Walsh FC (2010) Electrochim Acta 55:2163

    Article  Google Scholar 

  45. Correa-Lozano B, Comninellis C, DeBattisti A (1997) J Appl Electrochem 27:970

    Article  CAS  Google Scholar 

  46. Panizza M, Cerisola G (2004) Electrochim Acta 49:3221

    Article  CAS  Google Scholar 

  47. Rodriguez J, Rodrigo MA, Panizza M, Cerisola G (2009) J Appl Electrochem 39:2285

    Article  CAS  Google Scholar 

  48. Panizza M, Cerisola G (2003) Electrochim Acta 48:1515

    Article  CAS  Google Scholar 

  49. Panizza M, Delucchi M, Cerisola G (2005) J Appl Electrochem 35:357

    Article  CAS  Google Scholar 

  50. Panizza M, Barbucci A, Ricotti R, Cerisola G (2007) Separ Purif Technol 54:382

    Article  CAS  Google Scholar 

  51. Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (2000) J Electrochem Soc 147:592

    Article  CAS  Google Scholar 

  52. Bonfatti F, De Battisti A, Ferro S, Lodi G, Osti S (2000) Electrochim Acta 46:305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I.S. acknowledges the support from the members of the Laboratorio di Elettrochimica, Corrosione e Protezione dei Materiali Metallici of the Università degli Studi di Genova to draw up this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Panizza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panizza, M., Delucchi, M. & Sirés, I. Electrochemical process for the treatment of landfill leachate. J Appl Electrochem 40, 1721–1727 (2010). https://doi.org/10.1007/s10800-010-0109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0109-7

Keywords

Navigation