Skip to main content
Log in

Electro-organic reactions. Part 60[1]. The electro-oxidative conversion at laboratory scale of a lignosulfonate into vanillin in an FM01 filter press flow reactor: preparative and mechanistic aspects

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical conversion of a spruce lignosulfonate into vanillin, at nickel anodes, was explored in previously unobtainable detail. A flow reactor (FM01), in a rig that permitted considerable variation of electrolysis conditions, allowed up to 150 g to be electrolysed at up to12 A at a variety of electrode configurations. Samples taken during electrolysis gave detailed reaction profiles. The electrolyser operated at 145 °C/500 kPa/3 M NaOH and yields of vanillin were similar to those obtained industrially using chemical oxidants (about 5–7% w/w). Vanillin production was favoured by low current density and low initial concentration of lignosulfonate. Vanillin, alone, was consumed in a 2.7 F process under the above conditions. Historically, yields in chemical and electrochemical conversions of lignins into vanillin do not exceed 10%; the results herein explain this apparent limit as equilibrium between formation of vanillin, its concomitant oxidative destruction and further condensation of lignins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Alonso AM, Horcajada R, Motevalli M, Utley JHP, Wyatt PB (2005) Org Biomol Chem 3:2842

    Article  CAS  Google Scholar 

  2. Royal Society Working Group on Biofuels, Chair Pickett J (2008) Sustainable biofuels: prospects and challenges. The Royal Society, London

  3. Matthews E (2000) Wood products production and consumption. http://earthtrends.wri.org/pdf_library/feature/for_fea_roundwood_complete.pdf

  4. NationMaster.com (2010) http://www.nationmaster.com/graph/ene_oil_pro-energy-oil-production. Oil Production (2007) by country

  5. Klemola A, Tuovinen J (1989) Method for the production of vanillin US 4,847,422

  6. Salvesen JR, Hossfeld RL, Lovin RJ (1946) Process for producing low molecular weight lignin degradation products US 2,405,451

  7. Brauns FE, Pearl IA (1947) Degradation of lignin US 2,417,346

  8. Craig D, Logan CD (1963) Method of producing vanillin etc. from lignosulfonic acid compounds British 935,305

  9. Utley JHP, Smith CZ (1988) Electrochemical treatment of lignins US 4,786,382

  10. Craig D, Logan CD (1962) Vanillin from lignosulfonic acid compounds US 3,054,659

  11. Marshall HB, Sankey CA (1950) Method of producing vanillin US 2,516,827

  12. Marshall HB, Sankey CA (1951) Method of producing vanillin US 2,544,999

  13. Bjorsvik HR (1999) Org Process Res Dev 3:330

    Article  CAS  Google Scholar 

  14. Mathias AL, Rodrigues AE (1995) Holzforschung 49:273

    Article  CAS  Google Scholar 

  15. Parpot P, Bettencourt AP, Carvalho AM, Belgsir EM (2000) J Appl Electrochem 30:727

    Article  CAS  Google Scholar 

  16. Smith CZ, Utley JHP, Petrescu M, Viertler H (1989) J Appl Electrochem 19:535

    Article  CAS  Google Scholar 

  17. Griesbach U et al (2009) Method for electrochemically cleaving lignin on a diamond electrode DE WO/2009/138368

  18. Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2005) Water Res 39:2687

    Article  Google Scholar 

  19. Cañizares P, Diaz M, Dominguez JA, Garcia-Gomez J, Rodrigo MA (2002) Ind Eng Chem Res 41:4187

    Article  Google Scholar 

  20. Dominguez-Ramos A, Aldaco R, Irabien A (2008) Ind Eng Chem Res 47:9848

    Article  CAS  Google Scholar 

  21. Fleischmann M, Pletcher D, Korinek K (1972) J Chem Soc Perkin II:1396

    Google Scholar 

  22. Schäfer HJ (1987) Top Curr Chem 142:101

    Google Scholar 

  23. Robertson PM, Berg P, Reimann H, Schleich K, Seiler P (1983) J Electrochem Soc 130:591

    Article  CAS  Google Scholar 

  24. Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1994) J Appl Electrochem 24:95

    Article  CAS  Google Scholar 

  25. Hawkes GE, Smith CZ, Utley JHP, Vargas RR, Viertler H (1993) Holzforschung 47:302

    Article  CAS  Google Scholar 

  26. Hawkes GE, Smith CZ, Utley JHP, Chum HL (1986) Holzforschung 40:115

    CAS  Google Scholar 

  27. Gierer J, Imsgard F, Petterson I (1976) Chemical changes in alkaline lignin solutions applied polymer symposium No. 28. Wiley, New York

  28. Gierer J, Noren I (1962) Acta Chem Scand B16:1713

    Article  Google Scholar 

  29. Pardini VL, Smith CZ, Utley JHP, Vargas RR, Viertler H (1991) J Org Chem 56:7305

    Article  CAS  Google Scholar 

  30. Miksche GE (1973) Acta Chem Scand B27:1355

    Article  Google Scholar 

  31. Zuman P, Rupp EB (2001) Collect Czech Chem Commun 66:1125

    Article  CAS  Google Scholar 

  32. Connors WJ, Sarkanen S, McCarthy JL (1980) Holzforschung 34:80

    Article  CAS  Google Scholar 

  33. Brown CJ, Walsh FC, Pletcher D (1995) Chem Eng Res Des 73:196

    CAS  Google Scholar 

  34. Robinson D (1990) In: Genders JD, Pletcher D (eds) Electrosynthesis—from laboratory to pilot to production. The Electrosynthesis Co, Inc, East Amherst

    Google Scholar 

  35. Brown CJ, Pletcher D, Hammond JK, Robinson D, Walsh FC (1992) J Appl Electrochem 22:613

    Article  CAS  Google Scholar 

  36. Sjostrom E (1981) Wood chemistry, fundamentals and applications. Academic Press, New York

    Google Scholar 

  37. Hapiot P, Pinson J, Neta P, Francesch C, Mhamdi F, Rolando C, Schneider S (1994) Phytochemistry 36:1013

    Article  CAS  Google Scholar 

  38. Matsushita Y, Sekiguchi T, Ichino R, Fukushima K (2009) J Wood Sci 55:344

    Article  CAS  Google Scholar 

  39. Chum HL, Johnson DK, Palasz PD, Smith CZ, Utley JHP (1987) Macromolecules 20:2698

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The flow rig was designed by Dr J.K. Hammond (ICI) and it centred on an FM01-LC filter press flow reactor (donated by ICI). Components, including Expamet and Retimet nickel electrodes, were donated by ICI and the rig was constructed in The Queen Mary Faculty of Science Mechanical Workshop under the supervision of Mr F. Hands. We are also grateful for substantial financial and material support from Borregaard Industries Ltd., PO Box 162, N-1701 Sarpsborg, Norway and for crucial help and discussions with Dr Hans Evju of that company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. P. Utley.

Additional information

John K. Hammond—formerly of ICI Chemicals and Polymers Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C.Z., Utley, J.H.P. & Hammond, J.K. Electro-organic reactions. Part 60[1]. The electro-oxidative conversion at laboratory scale of a lignosulfonate into vanillin in an FM01 filter press flow reactor: preparative and mechanistic aspects. J Appl Electrochem 41, 363–375 (2011). https://doi.org/10.1007/s10800-010-0245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0245-0

Keywords

Navigation