Skip to main content
Log in

Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This research investigated the anodic stability of boron-doped ultrananocrystalline diamond (BD-UNCD) film electrodes on a variety of substrates (Si, Ta, Nb, W, and Ti) at a current density of 1 A cm−2. At an applied charge of 100 A h cm−2, measurable BD-UNCD film wear was not observed using SEM cross-sectional measurements. However, anodic treatment of the electrodes resulted in surface oxidation and film delamination, which caused substantial changes to the electrochemical properties of the electrodes. The substrate roughness, substrate electroactivity, and compactness of the substrate oxide were key parameters that affected film adhesion, and the primary mechanism of electrode failure was delamination of the BD-UNCD film. Substrate materials whose oxides had a larger coefficient of thermal expansion relative to the reduced metal substrates resulted in film delamination. The approximate substrate stability followed the order of: Ta > Si > Nb > W ≫ Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kraft A (2007) Int J Electrochem Sci 2:355

    CAS  Google Scholar 

  2. Xu JS, Granger MC, Chen QY et al (1997) Anal Chem 69:A591

    Article  Google Scholar 

  3. Bennett JA, Wang JA, Show Y et al (2004) J Electrochem Soc 151:E306

    Article  CAS  Google Scholar 

  4. Jiao S, Sumant A, Kirk MA et al (2001) J Appl Phys 90:118

    Article  CAS  Google Scholar 

  5. Krauss AR, Auciello O, Gruen DM et al (2001) Diam Relat Mater 10:1952

    Article  CAS  Google Scholar 

  6. Naguib NN, Elam JW, Birrell J et al (2006) Chem Phys Lett 430:345

    Article  CAS  Google Scholar 

  7. Auciello O, Pacheco S, Sumant AV et al (2007) IEEE Microw Mag 8:61

    Article  Google Scholar 

  8. Ramanathan M, Darling SB, Sumant AV et al (2010) J Vac Sci Technol A 28:979

    Article  CAS  Google Scholar 

  9. Sumant AV, Auciello O, Carpick RW et al (2010) MRS Bull 35:281

    Article  CAS  Google Scholar 

  10. Iniesta J, Michaud PA, Panizza M et al (2001) Electrochim Acta 46:3573

    Article  CAS  Google Scholar 

  11. Mishra D, Liao ZH, Farrell J (2008) Environ Sci Technol 42:9344

    Article  CAS  Google Scholar 

  12. Carter KE, Farrell J (2009) Environ Sci Technol 43:8350

    Article  CAS  Google Scholar 

  13. Lim PY, Lin FY, Shih HC et al (2008) Thin Solid Films 516:6125

    Article  CAS  Google Scholar 

  14. Chen XM, Chen GH, Gao FR et al (2003) Environ Sci Technol 37:5021

    Article  CAS  Google Scholar 

  15. Lowe MA, Fischer AE, Swain GM (2006) J Electrochem Soc 153:B506

    Article  CAS  Google Scholar 

  16. Tian Y, Chen XM, Shang C et al (2006) J Electrochem Soc 153:J80

    Article  CAS  Google Scholar 

  17. Duo I, Levy-Clement C, Fujishima A et al (2004) J Appl Electrochem 34:935

    Article  CAS  Google Scholar 

  18. Ferro S, Dal Colle M, De Battisti A (2005) Carbon 43:1191

    Article  CAS  Google Scholar 

  19. Simon N, Girard H, Ballutaud D et al (2005) Diam Relat Mater 14:1179

    Article  CAS  Google Scholar 

  20. Wang M, Simon N, Decorse-Pascanut C et al (2009) Electrochim Acta 54:5818

    Article  CAS  Google Scholar 

  21. Wang M, Simon N, Charrier G et al (2010) Electrochem Commun 12:351

    Article  CAS  Google Scholar 

  22. Goeting CH, Marken F, Gutierrez-Sosa A et al (2000) Diam Relat Mater 9:390

    Article  CAS  Google Scholar 

  23. Mahe E, Devilliers D, Comninellis C (2005) Electrochim Acta 50:2263

    Article  CAS  Google Scholar 

  24. Bock C, MacDougall B (2002) Electrochim Acta 47:3361

    Article  CAS  Google Scholar 

  25. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  26. Salazar-Banda GR, de Carvalho AE, Andrade LS et al (2010) J Appl Electrochem 40:1817

    Article  CAS  Google Scholar 

  27. Hernando J, Lud SQ, Bruno P et al (2009) Electrochim Acta 54:1909

    Article  CAS  Google Scholar 

  28. Mulder WH, Sluyters JH, Pajkossy T et al (1990) J Electroanal Chem 285:103

    Article  CAS  Google Scholar 

  29. Bockris JOM, Reddy AK, Gambra-Aldeco M (2000) Modern electrochemistry, 2nd edn. Plenum Press, New York

    Google Scholar 

  30. Holt KB, Bard AJ, Show Y et al (2004) J Phys Chem B 39:15117

    Article  Google Scholar 

  31. Kolber T, Piplits K, Haubner R et al (1999) Fresenius J Anal Chem 365:636

    Article  CAS  Google Scholar 

  32. Tryk DA, Tsunozaki K, Rao TN et al (2001) Diam Relat Mater 10:1804

    Article  CAS  Google Scholar 

  33. Kondo T, Honda K, Tryk DA et al (2005) J Electrochem Soc 152:E18

    Article  CAS  Google Scholar 

  34. Ricci PC, Anedda A, Carbonaro CM et al (2005) Thin Solid Films 482:311

    Article  CAS  Google Scholar 

  35. Haynes WM (2010) CRC handbook of chemistry and physics, 91st edn. CRC Press, New York

    Google Scholar 

  36. Canizares P, Saez C, Martinez F et al (2008) Electrochem Solid State 11:E15

    Article  CAS  Google Scholar 

  37. Rysy S, Sadowski H, Helbig R (1999) J Solid State Electron 3:437

    CAS  Google Scholar 

  38. Scholze H (1990) Glass: nature, structure and properties. Springer, New York

    Google Scholar 

  39. Touloukian YS, Kirby RK, Taylor RE et al (1977) Thermal expansion, nonmetallic solids. Plenum, New York

    Google Scholar 

  40. Rosen C, Banks E, Post B (1956) Acta Crystallogr 9:475

    Article  CAS  Google Scholar 

  41. Straumanis ME, Ejima T, James WJ (1960) Acta Crystallogr 13:1022

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation Small Business for Innovative Research program (NSF-IIP-0945935) for the financial support of this work. We also thank Craig Duncan and Laura-Ann Chin for conducting TCE oxidation experiments and Dr. Orchideh Azizi for performing EIS fits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Chaplin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplin, B.P., Wyle, I., Zeng, H. et al. Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. J Appl Electrochem 41, 1329–1340 (2011). https://doi.org/10.1007/s10800-011-0351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0351-7

Keywords

Navigation