Skip to main content
Log in

Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The nanosized Mn3O4 particles were prepared by microwave-assisted reflux synthesis method. The prepared sample was characterized using various techniques such as X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman analysis, and transmission electron microscopy (TEM). Electrochemical properties of Mn3O4 nanoparticles were investigated using cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge analysis in different electrolytes such as 1 M KCl, 1 M Na2SO4, 1 M NaNO3, and 6 M KOH electrolytes. XRD pattern reveals the formation of single-phase Mn3O4 nanoparticles. The FT-IR and Raman analysis also assert the formation of Mn3O4 nanoparticles. The TEM image shows the spherical shape particles with less than 50 nm sizes. Among all the electrolytes, the Mn3O4 nanoparticles possess maximum specific capacitance of 94 F g−1 in 6 M KOH electrolyte calculated from CV. The order of capacitance obtained by various electrolytes is 6 M KOH > 1 M KCl > 1 M NaNO3 > 1 M Na2SO4. The EIS and galvanostatic charge–discharge results further substantiate with the CV results. The cycling stability of Mn3O4 electrode reveals that the prepared Mn3O4 nanoparticles are a suitable electrode material for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao X, Sanchez BM, Dobson PJ, Grant PS (2011) Nanoscale 3:839

    Article  CAS  Google Scholar 

  2. Conway BE (1999) Electrochemical supercapacitors. Kluwer-Plenum, New York

    Google Scholar 

  3. Devadas A, Baranton S, Napporn TW, Coutanceau C (2011) J Power Sources 196:4044

    Article  CAS  Google Scholar 

  4. Meher SK, Justin P, Rao GR (2011) Appl Mater Interfaces 3:2063

    Article  CAS  Google Scholar 

  5. Yuan YF, Xia XH, Wu JB, Huang XH, Pei YB, Yang JL, Guo SY (2011) Electrochem Commun 13:1123

    Article  CAS  Google Scholar 

  6. Zheng FL, Li GR, Ou YN, Wang ZL, Su CY, Tong YX (2010) Chem Commun 46:5021

    Article  CAS  Google Scholar 

  7. Kalai Selvan R, Perelshtein I, Perkas N, Gedanken A (2008) J Phys Chem C 112:1825

    Article  Google Scholar 

  8. Zhang Y, Li GY, Lv Y, Wang LZ, Zhang AQ, Song YH, Huang BL (2011) Int J Hydrogen Energy 36:11760

    Article  CAS  Google Scholar 

  9. Xing S, Zhou Z, Ma Z, Wu Y (2011) Mater Lett 65:517

    Article  CAS  Google Scholar 

  10. Hu CC, Hung CY, Chang KH, Yang YL (2011) J Power Sources 196:847

    Article  CAS  Google Scholar 

  11. Reddy RN, Reddy RG (2003) J Power Sources 124:330

    Article  CAS  Google Scholar 

  12. Xu MW, Jia W, Bao SJ, Su Z, Dong B (2010) Electrochim Acta 55:5117

    Article  CAS  Google Scholar 

  13. Ding KQ (2008) J Chin Chem Soc 55:543

    CAS  Google Scholar 

  14. Xia H, Xiao W, Lai MO, Lu L (2009) Nanoscale Res Lett 4:1035

    Article  CAS  Google Scholar 

  15. Hao X, Zhao J, Li Y, Zhao Y, Ma D, Li L (2011) Colloid Surf Physicochem Eng Aspect 374:42

    Article  CAS  Google Scholar 

  16. Zhou T, Mo S, Zhou S, Zou W, Liu Y, Yuan D (2011) J Mater Sci 46:3337

    Article  CAS  Google Scholar 

  17. Jiang H, Zhao T, Yan C, Ma J, Li C (2010) Nanoscale 2:2195

    Article  CAS  Google Scholar 

  18. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD (2010) J Electroanal Chem 647:60

    Article  CAS  Google Scholar 

  19. Dubal DP, Dhawale DS, Salunkhe RR, Fulari VJ, Lokhande CD (2010) J Alloys Compd 497:166

    Article  CAS  Google Scholar 

  20. Li Y, Tan H, Yang XY, Goris B, Verbeeck J, Bals S, Colson P, Cloots R, Tendeloo GV, Su BL (2011) Small 4:475

    Article  Google Scholar 

  21. Gao W, Ye S, Shao M (2011) J Phys Chem Solids 72:1027

    Article  CAS  Google Scholar 

  22. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD (2010) J Alloys Compd 496:370

    Article  CAS  Google Scholar 

  23. Ozkaya T, Baykal A, Kavas H, Kőseoğlu Y, Toprak MS (2008) Phys B 403:3760

    Article  CAS  Google Scholar 

  24. Baykal A, Kavas H, Durmuş Z, Demir M, Kazan S, Topkaya R, Toprak MS (2010) Cent Eur J Chem 8(3):633

    Article  CAS  Google Scholar 

  25. Zhang W, Yang Z, Liu Y, Tang S, Han X, Chen M (2004) J Cryst Growth 263:394

    Article  CAS  Google Scholar 

  26. Bilecka I, Niederberger M (2010) Nanoscale 2:1358

    Article  CAS  Google Scholar 

  27. Apte SK, Naik SD, Sonawane RS, Kale BB, Pavaskar Neela, Mandale AB, Das BK (2006) Mater Res Bull 41:647

    Article  CAS  Google Scholar 

  28. Berthelin CB, Stuerga D (2005) J Mater Sci 40:253

    Article  Google Scholar 

  29. Malinger KA, Ding YS, Sithambaram S, Espinal L, Gomez S, Suib SL (2006) J Catal 239:290

    Article  CAS  Google Scholar 

  30. Komaba S, Tsuchikawa T, Ogata A, Yabuuchi N, Nakagawa D, Tomita M (2012) Electrochim Acta 59:455

    Article  CAS  Google Scholar 

  31. Devaraj S, Munichandraiah (2008) J Phys Chem C 112:4406

    Article  CAS  Google Scholar 

  32. Cui X, Hu F, Wei W, Chen W (2011) Carbon 49:1225

    Article  CAS  Google Scholar 

  33. Wang H, Li Z, Yang J, Li Q, Zhong X (2009) J Power Sources 194:1218

    Article  CAS  Google Scholar 

  34. Wang B, Park J, Wang C, Ahn H, Wang G (2010) Electrochim Acta 55:6812

    Article  CAS  Google Scholar 

  35. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Lokhande CD (2010) Appl Surf Sci 256:4411

    Article  CAS  Google Scholar 

  36. Gibot P, Laffont L (2007) J Solid State Chem 180:695

    Article  CAS  Google Scholar 

  37. Patra CR, Gedanken A (2004) New J Chem 28:1060

    Article  CAS  Google Scholar 

  38. Wang H, Zhu JJ, Zhu JM, Liao XH, Xu S, Ding T, Chen HY (2002) Phys Chem Chem Phys 4:3794

    Article  CAS  Google Scholar 

  39. Senthilkumar B, Thenamirtham P, Kalai Selvan R (2011) Appl Surf Sci 257:9063

    Article  CAS  Google Scholar 

  40. Anilkumar M, Ravi V (2005) Mater Res Bull 40:605

    Article  CAS  Google Scholar 

  41. Sekar C, Kalai Selvan R, Senthilkumar ST, Senthilkumar B, Sanjeeviraja C (2012) Powder Technol 98:215

    Google Scholar 

  42. Yang LX, Zhu YJ, Tong H, Wang WW, Cheng GF (2006) J Solid State Chem 179:1225

    Article  CAS  Google Scholar 

  43. Zuo J, Xu C, Liu Y, Qian Y (1998) Nanostruct Mater 10:1331

    Article  CAS  Google Scholar 

  44. Sharma RK, Oh HS, Shul YG, Kim H (2008) Phys B 403:1763

    Article  CAS  Google Scholar 

  45. Ghodbane O, Pascal JL, Fraisse B, Favier F (2010) Appl Mater Interfaces 2:3493

    Article  CAS  Google Scholar 

  46. Zhang J, Jiang J, Zhao XS (2011) J Phys Chem C 115:6448

    Article  CAS  Google Scholar 

  47. Xu J, Gao L, Cao J, Wang W, Chen Z (2010) Electrochim Acta 56:732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Kalai Selvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankar, K.V., Kalpana, D. & Selvan, R.K. Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications. J Appl Electrochem 42, 463–470 (2012). https://doi.org/10.1007/s10800-012-0424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0424-2

Keywords

Navigation