Skip to main content
Log in

Flame-retardant co-solvent incorporation into lithium-ion coin cells with Si-nanoparticle anodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The cycling performance of Si-nanoparticle/Li cells with different electrolytes has been investigated. Cells containing standard binary LiPF6/ethylene carbonate/ethyl methyl carbonate electrolytes have poor capacity retention (46 %) after 50 cycles. Cells cycled with fluoroethylene carbonate (FEC)-based electrolyte have much better capacity retention (74 %). The effect of incorporation of flame-retardant co-solvents triphenyl phosphate and dimethyl methylphosphonate was investigated with both the standard and FEC electrolytes. The incorporation of the FR co-solvents did not significantly alter the performance of either electrolyte. Ex situ analysis via scanning electron microscopy, attenuated total reflectance infrared spectroscopy, and X-ray photoelectron spectroscopy was conducted to gain a better understanding of the role of electrolyte in solid electrolyte interphase structure and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  2. Xu K (2004) nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418. doi:10.1021/cr030203g

    Article  CAS  Google Scholar 

  3. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039. doi:10.1016/j.jpowsour.2006.09.084

    Article  CAS  Google Scholar 

  4. Dalavi S, Guduru P, Lucht BL (2012) Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J Electrochem Soc 159:A642–A646. doi:10.1149/2.076205jes

    Article  CAS  Google Scholar 

  5. Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103–A108. doi:10.1149/1.2402112

    Article  CAS  Google Scholar 

  6. Xiao J, Xu W, Wang D et al (2010) Stabilization of Silicon anode for Li-ion batteries. J Electrochem Soc 157:A1047–A1051. doi:10.1149/1.3464767

    Article  CAS  Google Scholar 

  7. Liu W-R, Guo Z-Z, Young W-S et al (2005) Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J Power Sources 140:139–144. doi:10.1016/j.jpowsour.2004.07.032

    Article  CAS  Google Scholar 

  8. Nguyen CC, Choi H, Song S-W (2013) Roles of oxygen and interfacial stabilization in enhancing the cycling ability of silicon oxide anodes for rechargeable lithium batteries. J Electrochem Soc 160:A906–A914. doi:10.1149/2.118306jes

    Article  CAS  Google Scholar 

  9. Chen L, Wang K, Xie X, Xie J (2006) Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive. Electrochem Solid State Lett 9:A512–A512. doi:10.1149/1.2338771

    Article  CAS  Google Scholar 

  10. Nie M, Abraham DP, Seo DM et al (2013) Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412. doi:10.1021/jp404155y

    Article  CAS  Google Scholar 

  11. Smart MC (1999) Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates. J Electrochem Soc 146:486–492. doi:10.1149/1.1391633

    Article  CAS  Google Scholar 

  12. Xu K, Ding MS, Zhang S et al (2002) An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J Electrochem Soc 149:A622–A626. doi:10.1149/1.1467946

    Article  CAS  Google Scholar 

  13. Dalavi S, Xu M, Ravdel B et al (2010) Nonflammable electrolytes for lithium-ion batteries containing dimethyl methylphosphonate. J Electrochem Soc 157:A1113–A1120. doi:10.1149/1.3473828

    Article  CAS  Google Scholar 

  14. Dunn RP, Kafle J, Krause FC et al (2012) Electrochemical analysis of Li-ion cells containing triphenyl phosphate. J Electrochem Soc 159:A2100–A2108. doi:10.1149/2.081212jes

    Article  CAS  Google Scholar 

  15. Dunn RP, Nadimpalli SPV, Guduru P, Lucht BL (2013) Flame retardant co-solvent incorporation into lithium-ion coin cells with thin-film Si anodes. J Electrochem Soc 161:A176–A182. doi:10.1149/2.086401jes

    Article  Google Scholar 

  16. Izquierdo-Gonzales S, Li W, Lucht BL (2004) Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes. J Power Sources 135:291–296. doi:10.1016/j.jpowsour.2004.04.011

    Article  CAS  Google Scholar 

  17. Shim E-G, Nam T-H, Kim J-G et al (2007) Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive. J Power Sources 172:919–924. doi:10.1016/j.jpowsour.2007.04.088

    Article  CAS  Google Scholar 

  18. Smith KA, Smart MC, Prakash GKS, Ratnakumar VB (2009) Lithium-ion electrolytes containing flame-retardant additives for increased safety characteristics. ECS Trans 16:33–41. doi:10.1149/1.3123125

    Article  CAS  Google Scholar 

  19. Smart MC, Krause FC, Hwang C et al (2011) The evaluation of triphenyl phosphate as a flame retardant additive to improve the safety of lithium-ion battery electrolytes. ECS Trans 35:1–11. doi:10.1149/1.3646164

    Article  CAS  Google Scholar 

  20. Shim E-G, Nam T-H, Kim J-G et al (2007) Effects of functional electrolyte additives for Li-ion batteries. J Power Sources 172:901–907. doi:10.1016/j.jpowsour.2007.04.089

    Article  CAS  Google Scholar 

  21. Hyung YE, Vissers DR, Amine K (2003) Flame-retardant additives for lithium-ion batteries. J Power Sources 119–121:383–387. doi:10.1016/S0378-7753(03)00225-8

    Article  Google Scholar 

  22. Xiang HF, Jin QY, Chen CH et al (2007) Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries. J Power Sources 174:335–341. doi:10.1016/j.jpowsour.2007.09.025

    Article  CAS  Google Scholar 

  23. Xiang HF, Xu HY, Wang ZZ, Chen CH (2007) Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. J Power Sources 173:562–564. doi:10.1016/j.jpowsour.2007.05.001

    Article  CAS  Google Scholar 

  24. Feng JK, Ai XP, Cao YL, Yang HX (2008) Possible use of non-flammable phosphonate ethers as pure electrolyte solvent for lithium batteries. J Power Sources 177:194–198. doi:10.1016/j.jpowsour.2007.10.084

    Article  CAS  Google Scholar 

  25. Wang X, Yasukawa E, Kasuya S, Properties IF (2001) Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties. J Electrochem Soc 148:A1058–A1065. doi:10.1149/1.1397773

    Article  CAS  Google Scholar 

  26. Buqa H, Holzapfel M, Krumeich F et al (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617–622. doi:10.1016/j.jpowsour.2006.03.073

    Article  CAS  Google Scholar 

  27. Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158:A798–A798. doi:10.1149/1.3589300

    Article  CAS  Google Scholar 

  28. Etacheri V, Haik O, Goffer Y et al (2011) Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 28:965–976. doi:10.1021/la203712s

    Article  Google Scholar 

  29. Koo B, Kim H, Cho Y et al (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed 51:8762–8767. doi:10.1002/anie.201201568

    Article  CAS  Google Scholar 

  30. Zhuang GV, Yang H, Blizanac B, Ross PN (2005) A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy. Electrochem Solid State Lett 8:A441. doi:10.1149/1.1979327

    Article  CAS  Google Scholar 

  31. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester

    Google Scholar 

  32. Philippe B, Dedryvère R, Allouche J et al (2012) Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater 24:1107–1115. doi:10.1021/cm2034195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from Department of Energy Office of Basic Energy Sciences EPSCoR Implementation award (DE-SC0007074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett L. Lucht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunn, R.P., Nguyen, C.C. & Lucht, B.L. Flame-retardant co-solvent incorporation into lithium-ion coin cells with Si-nanoparticle anodes. J Appl Electrochem 45, 873–880 (2015). https://doi.org/10.1007/s10800-015-0856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0856-6

Keywords

Navigation