Skip to main content

Advertisement

Log in

Hydrophilic carbon/TiO2 colloid composite: a potential counter electrode for dye-sensitized solar cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A new type of counter electrode (CE), composed of hydrophilic carbon (HC) particle and TiO2 colloid (HC/TiO2), was successfully prepared using doctor blade technique on fluorine-doped tin oxide substrate for dye-sensitized solar cell (DSSC). Properties of HC/TiO2 CE, including crystal structure, surface morphology, roughness, conductivity, and catalytic activity, were analyzed. Results showed that a HC/TiO2 CE with an average thickness of 1 µm contributed to high surface roughness. Cyclic voltammetry further revealed that HC/TiO2 CE displayed good catalytic activity similar to that of Pt electrode, which is mainly attributed to an addition of TiO2 in the electrode. DSSC was fabricated with HC/TiO2 CE. Under one sun illumination (AM 1.5, P in of 100 mWcm−2), the device exhibited an energy conversion efficiency of 1.9 %, which is comparable to 3.6 % of the cell with Pt electrode under the same experimental conditions. These findings suggest that HC/TiO2 CE is a promising alternative CE for low-cost DSSCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kouhnavard M, Ikeda S, Ludin NA, Ahmad Khairudin NB, Ghaffari BV, Mat-Teridi MA, Ibrahim MA, Sepeai S, Sopian K (2014) A review of Semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew Sustain Energy Rev 37:397–407. doi:10.1016/j.rser.2014.05.023

    Article  CAS  Google Scholar 

  2. Kim S, Lee JK, Kang SO, Ko J, Yum J-H, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin MK, Grätzel M (2006) Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc 128:16701–16707. doi:10.1021/ja066376f

    Article  CAS  Google Scholar 

  3. Denaro T, Baglio V, Girolamo M, Antonucci V, Arico AS, Matteucci F, Ornelas R (2009) Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells. J Appl Electrochem 39:2173–2179. doi:10.1007/s10800-009-9841-2

    Article  CAS  Google Scholar 

  4. Yamaguchi T, Tobe N, Matsumoto D, Nagai T, Arakawa H (2010) Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6 %. Sol Energy Mater Sol Cells 94:812–816. doi:10.1016/j.solmat.2009.12.029

    Article  CAS  Google Scholar 

  5. Lee KS, Lee Y, Lee JY, Ahn J-H, Park JH (2012) Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. ChemSusChem 5:379–382. doi:10.1002/cssc.201100430

    Article  CAS  Google Scholar 

  6. Sibinski M, Jakubowska M, Znajdek K, Słoma M, Guzowski B (2011) Carbon nanotube transparent conductive layers for solar cells applications. Opt Appl XLI:375–381

    Google Scholar 

  7. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi:10.1038/353737a0

    Article  Google Scholar 

  8. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634. doi:10.1126/science.1209688

    Article  CAS  Google Scholar 

  9. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153. doi:10.1016/S1389-5567(03)00026-1

    Article  Google Scholar 

  10. Momeni MM, Hosseini MG (2014) Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs. J Mater Sci 25:5027–5034. doi:10.1007/s10854-014-2267-6

    CAS  Google Scholar 

  11. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41:8735–8741. doi:10.1016/j.ceramint.2015.03.094

    Article  CAS  Google Scholar 

  12. Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloys Compd 637:393–400. doi:10.1016/j.jallcom.2015.02.137

    Article  CAS  Google Scholar 

  13. Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J Appl Electrochem 45:557–566. doi:10.1007/s10800-015-0836-x

    Article  CAS  Google Scholar 

  14. Kroon JM, Bakker NJ, Smit HJP, Liska P, Thampi KR, Wang P, Hinsch A, Hore S, Wu U, Sastrawan R, Durrant JR, Zakeeruddin SM, Gratzel M, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch GE (2007) Nanocrystalline dye-sensitized solar cells having maximum performance. Prog Photovoltaics Res Appl Prog 15:1–18. doi:10.1002/pip

    Article  CAS  Google Scholar 

  15. Kalowekamo J, Baker E (2009) Estimating the manufacturing cost of purely organic solar cells. Sol Energy 83(8):1224–1231

    Article  CAS  Google Scholar 

  16. Kouhnavard M, Ludin NA, Ghaffari VB, Sopian K, Ikeda S (2015) Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects. ChemSusChem 8:1510–1533. doi:10.1002/cssc.201500004

    Article  CAS  Google Scholar 

  17. Rehman AU, Asar AU, Ullah N, Ullah R, Imarn M (2012) A comparative study of dye-sensitized solar cell based on carbon black and graphite as cathode material. Int J Eng Technol 12:105–107

    Google Scholar 

  18. Li GR, Wang F, Song Xiong F Y, Gao XP (2012) TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells. Electrochim Acta 65:216–220

    Article  CAS  Google Scholar 

  19. Wang H, Hu YH (2012) Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci 5:8182. doi:10.1039/c2ee21905k

    Article  CAS  Google Scholar 

  20. Wu M, Lin X, Wang T, Qiu J, Ma T (2011) Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy Environ Sci 4:2308. doi:10.1039/c1ee01059j

    Article  CAS  Google Scholar 

  21. Chang J, Wei Y, Jin Q, Ren T (2013) Expanded graphite/carbon black as counter electrode for dye-sensitized solar cells. Sci J Mater Sci 3:75–82

    Google Scholar 

  22. Li X, Wei YS, Jin QQ, Ren TZ (2011) Expanded graphite/carbon nanotube as counter electrode for DSSCs. Adv Mater Res 311–313:1246–1249. doi:10.4028/www.scientific.net/AMR.311-313.1246

    Article  Google Scholar 

  23. Gille G, Rau B (1984) Buckling instability and adhesion of carbon layers. Thin Solid Films 120:109–121. doi:10.1016/0040-6090(84)90365-1

    Article  CAS  Google Scholar 

  24. Lim J, Ryu SY, Kim J, Jun Y (2013) A study of TiO2/carbon black composition as counter electrode materials for dye-sensitized solar cells. Nanoscale Res Lett 8:227–231. doi:10.1186/1556-276X-8-227

    Article  Google Scholar 

  25. Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murat K (2003) High-performance carbon counter electrode for dye-sensitized solar cells. Sol Energy Mater Sol Cells 79:459–469. doi:10.1016/S0927-0248(03)00021-7

    Article  CAS  Google Scholar 

  26. Ramasamy E, Lee WJ, Lee DY, Song JS (2007) Nanocarbon counterelectrode for dye sensitized solar cells. Appl Phys Lett 90:173103. doi:10.1063/1.2731495

    Article  Google Scholar 

  27. Ikeda S, Kawasaki Nobumoto A, Ono H, Ono H, Rusop M (2014) Preparation and applications of hydrophilic nano carbon particles. Adv Mater Res 832:767–772. doi:10.4028/www.scientific.net/AMR.832.767

    Article  Google Scholar 

  28. Ikeda S, Kawasaki S, Hayashi Y, Kita S, Nobumoto A, Ono H, Ono S (2012) Preparation of hydrophilic nano-carbon particles by electrolysis and their environmental applications. Electrochem Soc MA2012–02:3523

    Google Scholar 

  29. Murakami TN, Grätzel M (2008) Counter electrodes for DSC: application of functional materials as catalysts. Inorg Chim Acta 361:572–580. doi:10.1016/j.ica.2007.09.025

    Article  CAS  Google Scholar 

  30. Mukherjee S, Ramalingam B, Griggs L, Hamm S, Baker GA, Fraundorf P, Sengupta S, Gangopadhyay S (2012) Ultrafine sputter-deposited Pt nanoparticles for triiodide reduction in dye-sensitized solar cells: impact of nanoparticle size, crystallinity and surface coverage on catalytic activity. Nanotechnology 23:485405. doi:10.1088/0957-4484/23/48/485405

    Article  Google Scholar 

  31. Papageorgiou N, Maier W, Gratzel M (1997) An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J Electrochem Soc 144:876–884. doi:10.1149/1.1837502

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance provided by the Universiti Kebangsaan Malaysia (ICONIC-2013-006) and appreciate the contribution of the Solar Energy Research Institute (SERI) of Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojgan Kouhnavard.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouhnavard, M., Ludin, N.A., Ghaffari, B.V. et al. Hydrophilic carbon/TiO2 colloid composite: a potential counter electrode for dye-sensitized solar cells. J Appl Electrochem 46, 259–266 (2016). https://doi.org/10.1007/s10800-015-0910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0910-4

Keywords

Navigation