Skip to main content
Log in

Determination of norepinephrine using a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles by square wave stripping voltammetry

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles (GCE/GQDs/AuNPs) was developed for norepinephrine (NE) determination using squarewave stripping voltammetry. GQDs were synthesized by citric acid pyrolysis and characterized by UV–Vis and fluorescence spectroscopy. The chemically synthesized AuNPs were characterized by transmission electron microscopy and UV–Vis spectroscopy (Plasmon Band). GCE/GQDs surface was characterized by Raman spectroscopy and scanning electron microscopy. The conditions for the determination of NE with GCE/GQDs/AuNPs were optimized. The linear range was observed between 0.5 and 7.5 µmol L−1, with a detection limit (LOD) of 0.15 µmol L−1. The proposed methodology was validated with spiked samples for good precision and accuracy. GCE/GQDs/AuNPs were used in pharmaceutical preparations (NE ampoules) and in rat brain tissue with satisfactory results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baum B (1987) Neurotransmitter control of secretion. J Dent Res 66:628–632

    Article  CAS  PubMed  Google Scholar 

  2. GLOWINSKI J, BALDESSARINI RJ (1966) Metabolism of norepinephrine in the central nervous system. Pharmacol Rev 18:1201–1238

    CAS  PubMed  Google Scholar 

  3. Bard P (1929) The central representation of the sympathetic system: as indicated by certain physiologic observations. Arch Neurol Psychiatry 22:230–246

    Article  Google Scholar 

  4. Sofuoglu M, Sewell RA (2009) Review: norepinephrine and stimulant addiction. Addict Biol 14:119–129

    Article  CAS  PubMed  Google Scholar 

  5. Liu A-L, Zhang S-B, Chen W, Lin X-H, Xia X-H (2008) Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode. Biosens Bioelectron 23:1488–1495

    Article  CAS  PubMed  Google Scholar 

  6. De Benedetto GE, Fico D, Pennetta A, Malitesta C, Nicolardi G, Lofrumento DD, De Nuccio F, La Pesa V (2014) A rapid and simple method for the determination of 3, 4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. J Pharm Biomed Anal 98:266–270

    Article  CAS  PubMed  Google Scholar 

  7. Wei S, Song G, Lin J-M (2005) Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. J Chromatogr A 1098:166–171

    Article  CAS  PubMed  Google Scholar 

  8. Sorouraddin M, Manzoori J, Kargarzadeh E, Shabani AH (1998) Spectrophotometric determination of some catecholamine drugs using sodium bismuthate. J Pharm Biomed Anal 18:877–881

    Article  CAS  PubMed  Google Scholar 

  9. Haque A-MJ, Park H, Sung D, Jon S, Choi S-Y, Kim K (2012) An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem 84:1871–1878

    Article  CAS  PubMed  Google Scholar 

  10. Sajid M, Nazal MK, Mansha M, Alsharaa A, Jillani SMS, Basheer C (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC Trends Anal Chem 76:15–29

    Article  CAS  Google Scholar 

  11. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  12. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    Article  CAS  Google Scholar 

  14. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  15. Elyasi M, Khalilzadeh MA, Karimi-Maleh H (2013) High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem 141:4311–4317

    Article  CAS  PubMed  Google Scholar 

  16. Keyvanfard M, Shakeri R, Karimi-Maleh H, Alizad K (2013) Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Mater Sci Eng: C 33:811–816

    Article  CAS  Google Scholar 

  17. Dogan-Topal B, Bozal-Palabıyık B, Uslu B, Ozkan SA (2013) Multi-walled carbon nanotube modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-viral drug valganciclovir in pharmaceuticals. Sens Actuators B 177:841–847

    Article  CAS  Google Scholar 

  18. Gupta VK, Jain AK, Shoora SK (2013) Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine. Electrochim Acta 93:248–253

    Article  CAS  Google Scholar 

  19. Ensafi AA, Izadi M, Karimi-Maleh H (2013) Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 19:137–144

    Article  CAS  Google Scholar 

  20. Kerman K, Saito M, Tamiya E, Yamamura S, Takamura Y (2008) Nanomaterial-based electrochemical biosensors for medical applications. TrAC Trends Anal Chem 27:585–592

    Article  CAS  Google Scholar 

  21. Li Y, Jiang Y, Mo T, Zhou H, Li Y, Li S (2016) Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode. J Electroanal Chem 767:84–90

    Article  CAS  Google Scholar 

  22. Jian X, Liu X, Yang H-M, Guo M-M, Song X-L, Dai H-Y, Liang Z-H (2016) Graphene quantum dots modified glassy carbon electrode via electrostatic self-assembly strategy and its application. Electrochim Acta 190:455–462

    Article  CAS  Google Scholar 

  23. Bacon M, Bradley SJ, Nann T (2014) Graphene quantum dots. Part Part Syst Charact 31:415–428

    Article  CAS  Google Scholar 

  24. Jin SH, Kim DH, Jun GH, Hong SH, Jeon S (2013) Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7:1239–1245

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67:15–22

    Article  CAS  PubMed  Google Scholar 

  26. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  27. Khater M, de la Escosura-Muñiz A, Quesada-González D, Merkoçi A (2019) Electrochemical detection of plant virus using gold nanoparticle-modified electrodes, 1046:123–131

  28. Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31

    Article  CAS  Google Scholar 

  29. Sanghavi BJ, Kalambate PK, Karna SP, Srivastava AK (2014) Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/nafion composite modified glassy carbon electrode. Talanta 120:1–9

    Article  CAS  PubMed  Google Scholar 

  30. Mirmoghtadaie L, Ensafi AA, Kadivar M, Shahedi M, Ganjali MR (2013) Highly selective, sensitive and fast determination of folic acid in food samples using new electrodeposited gold nanoparticles by differential pulse voltammetry. Int J Electrochem Sci 8:3755–3767

    CAS  Google Scholar 

  31. Zhu L, Xu L, Huang B, Jia N, Tan L, Yao S (2014) Simultaneous determination of Cd (II) and Pb (II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode. Electrochim Acta 115:471–477

    Article  CAS  Google Scholar 

  32. Han H, Pan D, Liu D, Hu X, Lin M, Li F (2015) Cathodic stripping voltammetric determination of chromium in coastal waters on cubic nano-titanium carbide loaded gold nanoparticles modified electrode. Front Mar Sci 2:75

    Article  Google Scholar 

  33. Wong A, Razzino CA, Silva TA, Fatibello-Filho O (2016) Square-wave voltammetric determination of clindamycin using a glassy carbon electrode modified with graphene oxide and gold nanoparticles within a crosslinked chitosan film. Sens Actuators B 231:183–193

    Article  CAS  Google Scholar 

  34. da Silva W, Ghica ME, Ajayi RF, Iwuoha EI, Brett CMJFC (2019) Tyrosinase based amperometric biosensor for determination of tyramine in fermented food and beverages with gold nanoparticle doped poly (8-anilino-1-naphthalene sulphonic acid) modified electrode. Food Chem 282:18–26

    Article  CAS  PubMed  Google Scholar 

  35. Beitollahi H, Safaei M, Tajik SJA, Research BC (2019) Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples. Review 6:81–96

    CAS  Google Scholar 

  36. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  37. Pande S, Ghosh SK, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T (2007) Synthesis of normal and inverted gold-silver core-shell architectures in β-cyclodextrin and their applications in SERS. J Phys Chem C 111:10806–10813

    Article  CAS  Google Scholar 

  38. Chi J, Odontiadis J, Franklin M (1999) Simultaneous determination of catecholamines in rat brain tissue by high-performance liquid chromatography. J Chromatogr B 731:361–367

    Article  CAS  Google Scholar 

  39. Cruz G (2014) Neonatal exposure to estradiol valerate increases dopamine content in nigrostriatal pathway during adulthood in the rat. Horm Metab Res 46:322–327

    CAS  PubMed  Google Scholar 

  40. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110

    Article  CAS  PubMed  Google Scholar 

  41. Luo Z, Lu Y, Somers LA, Johnson AC (2009) High yield preparation of macroscopic graphene oxide membranes. J Am Chem Soc 131:898–899

    Article  CAS  PubMed  Google Scholar 

  42. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  PubMed  Google Scholar 

  43. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Func Mater 22:2971–2979

    Article  CAS  Google Scholar 

  44. Ting SL, Ee SJ, Ananthanarayanan A, Leong KC, Chen P (2015) Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim Acta 172:7–11

    Article  CAS  Google Scholar 

  45. Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014–3017

    Article  CAS  Google Scholar 

  46. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  47. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  PubMed  Google Scholar 

  48. Chen H, Wang Y, Wang Y, Dong S, Wang E (2006) One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer 47:763–766

    Article  CAS  Google Scholar 

  49. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  50. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2011) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18

    Article  CAS  PubMed  Google Scholar 

  52. Tang J, Huang R, Zheng S, Jiang S, Yu H, Li Z, Wang JJMJ (2019) A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls. Microchem J 145:899–907

    Article  CAS  Google Scholar 

  53. Jie G, Zhou Q, Jie GJT (2019) Graphene quantum dots-based electrochemiluminescence detection of DNA using multiple cycling amplification strategy. Talenta 194:658–663

    Article  CAS  Google Scholar 

  54. Shetti NP, Nayak DS, Malode SJ, Kulkarni RM (2017) An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode. Sens Actuators B 247:858–867

    Article  CAS  Google Scholar 

  55. Bagheri H, Afkhami A, Hashemi P, Ghanei M (2015) Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Adv 5:21659–21669

    Article  CAS  Google Scholar 

  56. Niu X, Yang W, Guo H, Ren J, Gao J (2013) Highly sensitive and selective dopamine biosensor based on 3, 4, 9, 10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode. Biosens Bioelectron 41:225–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank to FONDECYT Chile, for financial support under project No. 1180804, “Comisión Nacional de Investigación Científica y Tecnológica” (CONICYT) for doctoral fellowship 21150242, Dirección de Investigación Científica y Tecnológica (DICYT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Pizarro or R. Segura.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajardo, A., Tapia, D., Pizarro, J. et al. Determination of norepinephrine using a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles by square wave stripping voltammetry. J Appl Electrochem 49, 423–432 (2019). https://doi.org/10.1007/s10800-019-01288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01288-0

Keywords

Navigation