Skip to main content
Log in

A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A MnO2/rGO composite with a novel yarn-rod shape was fabricated by a simple, economic and environmentally friendly electrodeposition method. The as-prepared MnO2/rGO composite was systematically characterized via X-ray Diffraction, X-ray Photoelectron Spectroscopy, Raman Spectra, Scanning Electron Microscope, Transmission Electron Microscope, and Specific Surface Area measurement. The experimental results indicate that the MnO2 nanoparticles with rod-like morphology scatter over the yarn-shaped rGO sheet through the electrodeposition procedure. The current density of O2 reduction on the MnO2/rGO composite modified electrode is higher than those on MnO2 and rGO. The initial oxygen-reduction peak potential and half-wave potential of the MnO2/rGO composite are more positive than those of MnO2 and rGO. The MnO2/rGO composite, as a non-noble metal oxide catalyst, not only exhibits superior electrocatalytic activity for oxygen-reduction reaction (ORR) in an alkaline medium compared with MnO2 and rGO but also shows better ORR stability, higher electron transfer numbers, and stronger methanol-tolerant ability than the commercial Pt/C catalyst. These considerable results enable the development of a cheap and efficient non-noble metal electrocatalyst for ORR in fuel cells.

Graphic abstract

The MnO2/RGO composite prepared by the facile electrodeposition method shows the comparable electrocatalytic ORR performance with Pt/C

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xiong W, Du F, Liu Y, Perez A Jr, Supp M, Ramakrishnan TS, Dai L, Jiang L (2010) 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J Am Chem Soc 132(45):15839–15841

    Article  CAS  Google Scholar 

  2. Cheng F, Su Y, Liang J, Tao Z, Chen J (2009) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22(3):898–905

    Article  Google Scholar 

  3. Cheng F, Zhang T, Zhang Y, Du J, Han X, Chen J (2013) Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew Chem Int Ed 52(9):2474–2477

    Article  CAS  Google Scholar 

  4. Lee J-S, Park GS, Lee HI, Kim ST, Cao R, Liu M, Cho J (2011) Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett 11(12):5362–5366

    Article  CAS  Google Scholar 

  5. Zeng Z, Zhang W, Liu Y, Lu P, Wei J (2017) Uniformly electrodeposited α-MnO2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction. Electrochim Acta 256:232–240

    Article  CAS  Google Scholar 

  6. Zhang J, Guo C, Zhang L, Li CM (2013) Direct growth of flower-like manganese oxide on reduced graphene oxide towards efficient oxygen reduction reaction. Chem Commun 49(56):6334–6336

    Article  CAS  Google Scholar 

  7. Zuo L-X, Jiang L-P, Abdel-Halim E, Zhu J-J (2017) Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction. Ultrason Sonochem 35:219–225

    Article  CAS  Google Scholar 

  8. Lan B, Zheng X, Cheng G, Han J, Li W, Sun M, Yu L (2018) The art of balance: engineering of structure defects and electrical conductivity of α-MnO2 for oxygen reduction reaction. Electrochim Acta 283:459–466

    Article  CAS  Google Scholar 

  9. Li Y, Cao S, Fan L, Han J, Wang M, Guo R (2018) Hybrid shells of MnO2 nanosheets encapsulated by N-doped carbon towards nonprecious oxygen reduction reaction catalysts. J Colloid Interface Sci 527:241–250

    Article  CAS  Google Scholar 

  10. Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527

    Article  CAS  Google Scholar 

  11. Guo D, Dou S, Li X, Xu J, Wang S, Lai L, Liu HK, Ma J, Dou SX (2016) Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. Int J Hydrogen Energy 41(10):5260–5268

    Article  CAS  Google Scholar 

  12. Ezeigwe ER, Tan MT, Khiew PS, Siong CW (2015) Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior. Ceram Int 41(9):11418–11427

    Article  CAS  Google Scholar 

  13. Qian Y, Lu S, Gao F (2011) Synthesis of manganese dioxide/reduced graphene oxide composites with excellent electrocatalytic activity toward reduction of oxygen. Mater Lett 65(1):56–58

    Article  CAS  Google Scholar 

  14. Vigil JA, Lambert TN, Eldred K (2015) Electrodeposited MnOx/PEDOT composite thin films for the oxygen reduction reaction. ACS Appl Mater Interfaces 7(41):22745–22750

    Article  CAS  Google Scholar 

  15. Lee K, Ahmed MS, Jeon S (2015) Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction. J Power Sources 288:261–269

    Article  CAS  Google Scholar 

  16. Zeng Q, Cheng J, Tang L, Liu X, Liu Y, Li J, Jiang J (2010) Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv Funct Mater 20(19):3366–3372

    Article  CAS  Google Scholar 

  17. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  18. Li L, Hu Z, Yang Y, Liang P, Lu A, Xu H, Hu Y, Wu H (2013) Hydrothermal self-assembly synthesis of Mn3O4/reduced graphene oxide hydrogel and its high electrochemical performance for supercapacitors. Chin J Chem 31(10):1290–1298

    Article  CAS  Google Scholar 

  19. Li L, Seng KH, Liu H, Nevirkovets IP, Guo Z (2013) Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim Acta 87:801–808

    Article  CAS  Google Scholar 

  20. Zhao X, Zhang L, Murali S, Stoller MD, Zhang Q, Zhu Y, Ruoff RS (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6(6):5404–5412

    Article  CAS  Google Scholar 

  21. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  22. Niilisk A, Kozlova J, Alles H, Aarik J, Sammelselg V (2016) Raman characterization of stacking in multi-layer graphene grown on Ni. Carbon 98:658–665

    Article  CAS  Google Scholar 

  23. Chaunchaiyakul S, Yano T, Khoklang K, Krukowski P, Akai-Kasaya M, Saito A, Kuwahara Y (2016) Nanoscale analysis of multiwalled carbon nanotube by tip-enhanced Raman spectroscopy. Carbon 99:642–648

    Article  CAS  Google Scholar 

  24. Selvakumar K, Senthil Kumar SM, Thangamuthu R, Ganesan K, Murugan P, Rajput P, Jha SN, Bhattacharyya D (2015) Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution. J Phys Chem C 119(12):6604–6618

    Article  CAS  Google Scholar 

  25. Feng Z-P, Li G-R, Zhong J-H, Wang Z-L, Ou Y-N, Tong Y-X (2009) MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochem Commun 11(3):706–710

    Article  CAS  Google Scholar 

  26. Li H, Pang S, Wu S, Feng X, Müllen K, Bubeck C (2011) Layer-by-layer assembly and UV photoreduction of graphene–polyoxometalate composite films for electronics. J Am Chem Soc 133(24):9423–9429

    Article  CAS  Google Scholar 

  27. Liu R, Li S, Yu X, Zhang G, Zhang S, Yao J, Zhi L (2012) A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. J Mater Chem 22(8):3319–3322

    Article  CAS  Google Scholar 

  28. Xu G, Jiang F, Ren Z-a, Yang L-w (2015) Polyhedral MnO nanocrystals anchored on reduced graphene oxide as an anode material with superior lithium storage capability. Ceram Int 41(9):10680–10688

    Article  CAS  Google Scholar 

  29. Zhang X, Wang X, Le L, Ma A, Lin S (2015) Electrochemical growth of octahedral Fe3O4 with high activity and stability toward the oxygen reduction reaction. J Mater Chem A 3(38):19273–19276

    Article  CAS  Google Scholar 

  30. Shi C, Zang G-L, Zhang Z, Sheng G-P, Huang Y-X, Zhao G-X, Wang X-K, Yu H-Q (2014) Synthesis of layered MnO2 nanosheets for enhanced oxygen reduction reaction catalytic activity. Electrochim Acta 132:239–243

    Article  CAS  Google Scholar 

  31. Meng Y, Song W, Huang H, Ren Z, Chen S-Y, Suib SL (2014) Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136(32):11452–11464

    Article  CAS  Google Scholar 

  32. Zhu X, Zhang P, Xu S, Yan X, Xue Q (2014) Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications. ACS Appl Mater Interfaces 6(14):11665–11674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (21571034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Zhang, X., Cai, J. et al. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR. J Appl Electrochem 49, 767–777 (2019). https://doi.org/10.1007/s10800-019-01325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01325-y

Keywords

Navigation