Skip to main content

Advertisement

Log in

Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We investigate tin (Sn) and tin oxide (SnO2) nanoparticle catalysts deposited on gas diffusion layers for the electrochemical reduction of carbon dioxide (CO2) to formate. The performance and durability of these electrodes was evaluated in a gas-fed electrolysis cell with a flowing liquid electrolyte stream and an integrated reference electrode. The SnO2 electrodes achieved peak current densities of 385 ± 19 mA cm−2 while the Sn electrodes achieved peak current densities of 214 ± 6 mA cm−2, both at a formate selectivity > 70%. The associated peak formate production rates of 7.4 ± 0.6 mmol m−2 s−1 (Sn) and 14.9 ± 0.8 mmol m−2 s−1 (SnO2) were demonstrated for a 1-h electrolysis and compare favorably to prior literature. Post-test analyses reveal chemical and physical changes to both cathodes during electrolysis including oxide reduction at applied potentials more negative than − 0.6 V versus RHE, nanoparticle aggregation, and catalyst layer erosion. Understanding and mitigating these decay processes is key to extending electrode lifetime without sacrificing formate generation rates or process efficiency.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schiffer ZJ, Manthiram K (2017) Electrification and decarbonization of the chemical industry. Joule 1(1):10–14

    Article  Google Scholar 

  2. Chen A, Lin B-L (2018) A simple framework for quantifying electrochemical CO2 fixation. Joule 2(4):594–606

    Article  CAS  Google Scholar 

  3. Lechtenböhmer S et al (2016) Decarbonising the energy intensive basic materials industry through electrification—implications for future EU electricity demand. Energy 115:1623–1631

    Article  CAS  Google Scholar 

  4. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731

    Article  CAS  Google Scholar 

  5. Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16

    Article  CAS  Google Scholar 

  6. Zhang W et al (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5(1):1700275

    Article  CAS  Google Scholar 

  7. Lu Q, Jiao F (2016) Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29:439–456

    Article  CAS  Google Scholar 

  8. Kumar B et al (2016) New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction. Catal Today 270:19–30

    Article  CAS  Google Scholar 

  9. Dutta A et al (2018) Beyond copper in CO2 electrolysis: effective hydrocarbon production on silver nano-foam catalysts. ACS Catal 8(9):8357–8368

    Article  CAS  Google Scholar 

  10. Dutta A et al (2017) Electrochemical CO2 conversion using skeleton (sponge) type of Cu catalysts. ACS Catal 7(8):5431–5437

    Article  CAS  Google Scholar 

  11. Wang Q, Dong H, Yu H (2014) Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte. J Power Sources 271:278–284

    Article  CAS  Google Scholar 

  12. Wang Q et al (2015) Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer. J Power Sources 279:1–5

    Article  CAS  Google Scholar 

  13. Pérez-Rodríguez S et al (2016) Electrochemical reactors for CO2 reduction: from acid media to gas phase. Int J Hydrog Energy 41(43):19756–19765

    Article  CAS  Google Scholar 

  14. Lu X et al (2017) A high performance dual electrolyte microfluidic reactor for the utilization of CO2. Appl Energy 194:549–559

    Article  CAS  Google Scholar 

  15. Merino-Garcia I et al (2016) Electrochemical membrane reactors for the utilisation of carbon dioxide. Chem Eng J 305:104–120

    Article  CAS  Google Scholar 

  16. Hori Y et al (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39(11):1833–1839

    Article  CAS  Google Scholar 

  17. Wang Y, Niu C, Wang D (2018) Metallic nanocatalysts for electrochemical CO2 reduction in aqueous solutions. J Colloid Interface Sci 527:95–106

    Article  CAS  PubMed  Google Scholar 

  18. Agarwal AS et al (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. Chemsuschem 4(9):1301–1310

    Article  CAS  PubMed  Google Scholar 

  19. Garron A, Epron F (2005) Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water. Water Res 39(13):3073–3081

    Article  CAS  PubMed  Google Scholar 

  20. Muck RE et al (2018) Silage review: recent advances and future uses of silage additives. J Dairy Sci 101(5):3980–4000

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134(4):1986–1989

    Article  CAS  PubMed  Google Scholar 

  22. Wu J et al (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159(7):F353–F359

    Article  CAS  Google Scholar 

  23. Wu J et al (2014) Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell. J Mater Chem A 2(6):1647–1651

    Article  CAS  Google Scholar 

  24. Wu J et al (2013) Electrochemical reduction of carbon dioxide: II. Design, assembly, and performance of low temperature full electrochemical cells. J Electrochem Soc 160(9):F953–F957

    Article  CAS  Google Scholar 

  25. Wu J et al (2014) Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode. J Power Sources 258:189–194

    Article  CAS  Google Scholar 

  26. Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737

    Article  CAS  PubMed  Google Scholar 

  27. Bashir S et al (2016) Electrocatalytic reduction of carbon dioxide on SnO2/MWCNT in aqueous electrolyte solution. J CO2 Utilization 16:346–353

    Article  CAS  Google Scholar 

  28. Fu Y et al (2016) Electrochemical CO2 reduction to formic acid on crystalline SnO2 nanosphere catalyst with high selectivity and stability. Chin J Catal 37(7):1081–1088

    Article  CAS  Google Scholar 

  29. Kumar B et al (2017) Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew Chem Int Ed 56(13):3645–3649

    Article  CAS  Google Scholar 

  30. Li F et al (2017) Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew Chem Int Ed 56(2):505–509

    Article  CAS  Google Scholar 

  31. Lee S et al (2015) Alkaline CO2 electrolysis toward selective and continuous HCOO– production over SnO2 nanocatalysts. J Phys Chem C 119(9):4884–4890

    Article  CAS  Google Scholar 

  32. Eilert A et al (2017) Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J Phys Chem Lett 8(1):285–290

    Article  CAS  PubMed  Google Scholar 

  33. Pletcher D (2015) The cathodic reduction of carbon dioxide—what can it realistically achieve? A mini review. Electrochem Commun 61:97–101

    Article  CAS  Google Scholar 

  34. Paidar M, Fateev V, Bouzek K (2016) Membrane electrolysis—history, current status and perspective. Electrochim Acta 209:737–756

    Article  CAS  Google Scholar 

  35. Wiebe R, Gaddy VL (1940) The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical Phenomena*. J Am Chem Soc 62(4):815–817

    Article  CAS  Google Scholar 

  36. John R. Rumble, ed., CRC Handbook of Chemistry and Physics, 99th Edition (Internet Version 2018), CRC Press/Taylor & Francis, Boca Raton

  37. Proietto F et al (2018) Electrochemical conversion of CO2 to HCOOH at tin cathode in a pressurized undivided filter-press cell. Electrochim Acta 277:30–40

    Article  CAS  Google Scholar 

  38. Scialdone O et al (2016) Electrochemical reduction of carbon dioxide to formic acid at a tin cathode in divided and undivided cells: effect of carbon dioxide pressure and other operating parameters. Electrochim Acta 199:332–341

    Article  CAS  Google Scholar 

  39. Hashiba H et al (2016) Systematic analysis of electrochemical CO2 reduction with various reaction parameters using combinatorial reactors. ACS Comb Sci 18(4):203–208

    Article  CAS  PubMed  Google Scholar 

  40. Endrődi B et al (2017) Continuous-flow electroreduction of carbon dioxide. Prog Energy Combust Sci 62:133–154

    Article  Google Scholar 

  41. Delacourt C et al (2008) Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155(1):B42–B49

    Article  CAS  Google Scholar 

  42. Jhong H-RM, Brushett FR, Kenis PJA (2013) The effects of catalyst layer deposition methodology on electrode performance. Adv Energy Mater 3(5):589–599

    Article  CAS  Google Scholar 

  43. Ma S et al (2016) One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J Power Sources 301:219–228

    Article  CAS  Google Scholar 

  44. Del Castillo A et al (2015) Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: effect of metal loading and particle size. Appl Energy 157:165–173

    Article  CAS  Google Scholar 

  45. Kopljar D et al (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44(10):1107–1116

    Article  CAS  Google Scholar 

  46. Kopljar D, Wagner N, Klemm E (2016) Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes. Chem Eng Technol 39(11):2042–2050

    Article  CAS  Google Scholar 

  47. Yang H et al (2017) Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes. J CO2 Utilization 20:208–217

    Article  CAS  Google Scholar 

  48. Kutz RB et al (2017) Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol 5(6):929–936

    Article  CAS  Google Scholar 

  49. Sen S et al (2016) Pulsed electrodeposition of tin electrocatalysts onto gas diffusion layers for carbon dioxide reduction to formate. MRS Adv 2(8):451–458

    Article  CAS  Google Scholar 

  50. Irtem E et al (2016) Low-energy formate production from CO2 electroreduction using electrodeposited tin on GDE. J Mater Chem A 4(35):13582–13588

    Article  CAS  Google Scholar 

  51. Del Castillo A, Alvarez-Guerra M, Irabien A (2014) Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes. AIChE J 60(10):3557–3564

    Article  CAS  Google Scholar 

  52. Del Castillo A et al (2017) Sn nanoparticles on gas diffusion electrodes: synthesis, characterization and use for continuous CO2 electroreduction to formate. J CO2 Utilization 18:222–228

    Article  CAS  Google Scholar 

  53. Milshtein JD et al (2016) High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries. Energy Environ Sci 9(11):3531–3543

    Article  CAS  Google Scholar 

  54. Rheinländer PJ et al (2014) Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J Electrochem Soc 161(14):F1448–F1457

    Article  CAS  Google Scholar 

  55. Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4(9):3091–3095

    Article  CAS  Google Scholar 

  56. Li H, Oloman C (2005) The electro-reduction of carbon dioxide in a continuous reactor. J Appl Electrochem 35(10):955–965

    Article  CAS  Google Scholar 

  57. Li H, Oloman C (2006) Development of a continuous reactor for the electro-reduction of carbon dioxideto formate – part 1: process variables. J Appl Electrochem 36(10):1105

    Article  CAS  Google Scholar 

  58. Li H, Oloman C (2007) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate—part 2: pcale-up. J Appl Electrochem 37(10):1107–1117

    Article  CAS  Google Scholar 

  59. Prakash GKS, Viva FA, Olah GA (2013) Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J Power Sources 223:68–73

    Article  CAS  Google Scholar 

  60. Kapusta SD, Hackerman N (1980) Anodic passivation of tin in slightly alkaline solutions. Electrochim Acta 25(12):1625–1639

    Article  CAS  Google Scholar 

  61. Saravanan K et al (2017) Computational investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. J Mater Chem A 5:11756–11763

    Article  CAS  Google Scholar 

  62. Lee CW et al (2017) Reaction mechanisms of the electrochemical conversion of carbon dioxide to formic acid on tin oxide electrodes. ChemElectroChem 4(9):2130–2136

    Article  CAS  Google Scholar 

  63. Cui C et al (2016) Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode. J Catal 343:257–265

    Article  CAS  Google Scholar 

  64. Benck JD et al (2014) Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS ONE 9(10):e107942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Anantharaj S et al (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci 11:744–771

    Article  CAS  Google Scholar 

  66. Greenblatt JB et al (2018) The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2(3):381–420

    Article  CAS  Google Scholar 

  67. Brushett FR et al (2016) Development of novel tin nanostructures using pulse plating methods for the electroreduction of carbon dioxide to formic acid. Meeting Abstracts, MA2016-02(40), p 3012

  68. Masuda Y, Ohji T, Kato K (2012) Tin oxide nanosheet assembly for hydrophobic/hydrophilic coating and cancer sensing. ACS Appl Mater Interfaces 4(3):1666–1674

    Article  CAS  PubMed  Google Scholar 

  69. Won DH et al (2015) Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. Chemsuschem 8(18):3092–3098

    Article  CAS  Google Scholar 

  70. Liu Z et al (2016) Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. J CO2 Utilization 15:50–56

    Article  CAS  Google Scholar 

  71. Verma S et al (2016) A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. Chemsuschem 9(15):1972–1979

    Article  CAS  PubMed  Google Scholar 

  72. Jouny M, Luc W, Jiao F (2018) General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res 57(6):2165–2177

    Article  CAS  Google Scholar 

  73. Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136(38):13319–13325

    Article  CAS  PubMed  Google Scholar 

  74. Wu J, Sun S-G, Zhou X-D (2016) Origin of the performance degradation and implementation of stable tin electrodes for the conversion of CO2 to fuels. Nano Energy 27:225–229

    Article  CAS  Google Scholar 

  75. Anawati et al (2014) Degradation and deactivation of Sn catalyst used for CO2 reduction as function of overpotential. Electrochim Acta 133:188–196

    Article  CAS  Google Scholar 

  76. Salzberg HW, Mies F (1958) Cathodic disintegration of tin. J Electrochem Soc 105(2):64–66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work availed the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-1419807. The authors acknowledge the financial support of DOE SBIR Contract #DE-SC0015173. The authors thank Michael Orella of the Brushett Research Group for insightful discussions and assistance with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikile R. Brushett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Brown, S.M., Leonard, M. et al. Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes. J Appl Electrochem 49, 917–928 (2019). https://doi.org/10.1007/s10800-019-01332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01332-z

Keywords

Navigation