Skip to main content
Log in

Involution words II: braid relations and atomic structures

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Involution words are variations of reduced words for twisted involutions in Coxeter groups. They arise naturally in the study of the Bruhat order, of certain Iwahori–Hecke algebra modules, and of orbit closures in flag varieties. Specifically, to any twisted involutions xy in a Coxeter group W with automorphism \(*\), we associate a set of involution words \(\hat{\mathcal {R}}_*(x,y)\). This set is the disjoint union of the reduced words of a set of group elements \(\mathcal {A}_*(x,y)\), which we call the atoms of y relative to x. The atoms, in turn, are contained in a larger set \(\mathcal {B}_*(x,y) \subset W\) with a similar definition, whose elements are referred to as Hecke atoms. Our main results concern some interesting properties of the sets \(\hat{\mathcal {R}}_*(x,y)\) and \(\mathcal {A}_*(x,y) \subset \mathcal {B}_*(x,y)\). For finite Coxeter groups, we prove that \(\mathcal {A}_*(1,y)\) consists of exactly the minimal-length elements \(w \in W\) such that \(w^* y \le w\) in Bruhat order, and we conjecture a more general property for arbitrary Coxeter groups. In type A, we describe a simple set of conditions characterizing the sets \(\mathcal {A}_*(x,y)\) for all involutions \(x,y \in S_n\), giving a common generalization of three recent theorems of Can et al. We show that the atoms of a fixed involution in the symmetric group (relative to \(x=1\)) naturally form a graded poset, while the Hecke atoms surprisingly form an equivalence class under the “Chinese relation” studied by Cassaigne et al. These facts allow us to recover a recent theorem of Hu and Zhang describing a set of “braid relations” spanning the involution words of any self-inverse permutation. We prove a generalization of this result giving an analogue of Matsumoto’s theorem for involution words in arbitrary Coxeter groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Billey, S.C., Jockusch, W., Stanley, R.P.: Some combinatorial properties of schubert polynomials. J. Algebr. Combin. 2, 345–374 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Maths, vol. 231. Springer, New York (2005)

    MATH  Google Scholar 

  3. Brion, M.: The behaviour at infinity of the Bruhat decomposition. Comment. Math. Helv. 73(1), 137–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Can, M.B., Joyce, M.: Weak order on complete quadrics. Trans. Am. Math. Soc. 365(12), 6269–6282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Can, M.B., Joyce, M., Wyser, B.: Chains in weak order posets associated to involutions. J. Combin. Theory Ser. A 137, 207–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassaigne, J., Espie, M., Krob, D., Novelli, J.-C., Hivert, F.: The Chinese monoid. Int. J. Algebra Comput. 11(3), 301–334 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duchamp, G., Krob, D.: Plactic-growth-like monoids. In: Ito, M., Jürgensen, H. (eds.) Words, Languages and Combinatorics II, Kyoto, pp. 124–142. World Scientific, Singapore (1994)

    Google Scholar 

  8. Franzsen, W.N., Howlett, R.B.: Automorphisms of Coxeter groups of rank three. Proc. Am. Math. Soc. 129, 2607–2616 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  10. Hamaker, Z., Marberg, E., Pawlowski, B.: Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures, preprint (2015). arXiv:1508.01823

  11. Hu, J., Zhang, J.: On involutions in symmetric groups and a conjecture of Lusztig. Adv. Math. 287, 1–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hultman, A.: Fixed points of involutive automorphisms of the Bruhat order. Adv. Math. 195, 283–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hultman, A.: The combinatorics of twisted involutions in Coxeter groups. Trans. Am. Math. Soc. 359, 2787–2798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hultman, A.: Twisted identities in Coxeter groups. J. Algebr. Combin. 28, 313–332 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  16. Incitti, F.: The Bruhat order on the involutions of the symmetric group. J. Algebr. Combin. 20, 243–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Incitti, F.: Bruhat order on the involutions of classical Weyl groups. Adv. Appl. Math. 37, 68–111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jaszuńska, J., Okniński, J.: Structure of Chinese algebras. J. Algebra 346, 31–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Knutson, A., Miller, E.: Subword complexes in Coxeter groups. Adv. Math. 184(1), 161–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Linton, S., Propp, J., Roby, T., West, J.: Equivalence classes of permutations under various relations generated by constrained transpositions. J. Integer Seq. 15, Article 12.9.1 (2012)

  21. Lusztig, G.: A bar operator for involutions in a Coxeter group. Bull. Inst. Math. Acad. Sin. (N.S.) 7, 355–404 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Lusztig, G.: An involution based left ideal in the Hecke algebra, preprint (2015). arXiv:1507.02263v4

  23. Lusztig, G., Vogan, D.A.: Hecke algebras and involutions in Weyl groups. Bull. Inst. Math. Acad. Sin. (N.S.) 7, 323–354 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Marberg, E.: Positivity conjectures for Kazhdan-Lusztig theory on twisted involutions: the universal case. Represent. Theory 18, 88–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rains, E.M., Vazirani, M.J.: Deformations of permutation representations of Coxeter groups. J. Algebr. Combin. 37, 455–502 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Richardson, R.W., Springer, T.A.: The Bruhat order on symmetric varieties. Geom. Dedic. 35, 389–436 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Richardson, R.W., Springer, T.A.: Complements to: the Bruhat order on symmetric varieties. Geom. Dedic. 49, 231–238 (1994)

    Article  MATH  Google Scholar 

  28. Sloane, N.J.A. (ed.): The on-line encyclopedia of integer sequences (2003), published electronically at http://www.research.att.com/njas/sequences/

  29. Springer, T.A.: Some results on algebraic groups with involutions. Adv. Stud. Pure Math. 6, 525–543 (1985)

    MathSciNet  MATH  Google Scholar 

  30. Stembridge, J.R.: On the fully commutative elements of Coxeter groups. J. Algebr. Combin. 5, 353–385 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Wyser, B.J.: \(K\)-orbit closures on \(G/B\) as universal degeneracy loci for flagged vector bundles with symmetric or skew-symmetric bilinear form. Transform. Gr. 18, 557–594 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wyser, B.J., Yong, A.: Polynomials for symmetric orbit closures in the flag variety. Transform. Gr. (to appear)

Download references

Acknowledgments

We thank Dan Bump, Michael Joyce, Vic Reiner, Ben Wyser, Alex Yong, and Benjamin Young for many helpful conversations and suggestions in the course of the development of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Marberg.

Additional information

Eric Marberg was supported through a fellowship from the National Science Foundation.

Brendan Pawlowski was partially supported by NSF Grant 1148634.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamaker, Z., Marberg, E. & Pawlowski, B. Involution words II: braid relations and atomic structures. J Algebr Comb 45, 701–743 (2017). https://doi.org/10.1007/s10801-016-0722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-016-0722-6

Keywords

Navigation