Skip to main content
Log in

Breaking of waves of limiting amplitude over an obstacle

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Homogeneous heavy fluid flows over an uneven bottom are studied in a long-wave approximation. A mathematical model is proposed that takes into account both the dispersion effects and the formation of a turbulent upper layer due to the breaking of surface gravity waves. The asymptotic behavior of nonlinear perturbations at the wave front is studied, and the conditions of transition from smooth flows to breaking waves are obtained for steady-state supercritical flow over a local obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Witham, Linear and Nonlinear Waves, Wiley, New York (1974).

    Google Scholar 

  2. A. E. Green and P. M. Naghdi, “A derivation of equations for wave propagation in water of variable depth,” J. Fluid Mech., 78, 237–246 (1976).

    Article  ADS  Google Scholar 

  3. M. I. Zheleznyak, and E. N. Pelinovskii, “Physicomathematical models for the incidence of a tsunami on a beach,” in: The Incidence of a Tsunami on a Beach (collected scientific papers) [in Russian], Inst. of Appl. Phys., Acad. of Sci. of the USSR (1985), pp. 8–33.

  4. J. A. Battjes and T. Sakai, “Velocity field in a steady breaker,” J. Fluid Mech., 380, 257–278 (1999).

    Article  MathSciNet  Google Scholar 

  5. H. G. Hornung, C. Willert, and S. Willert, “The flow field downstream of a hydraulic jump,” J. Fluid Mech., 287, 299–316 (1995).

    Article  ADS  Google Scholar 

  6. I. A. Svendsen, J. Veeramony, J. Bakunin, and J. T. Kirby, “The flow in weak turbulent hydraulic jumps,” J. Fluid Mech., 418, 25–57 (2000).

    Article  ADS  Google Scholar 

  7. M. S. Longuet-Higgins and J. S. Turner, “An ‘entraining plume’ model of a spilling breaker,” J. Fluid Mech., 63, 1–20 (1974).

    Article  ADS  Google Scholar 

  8. I. A. Svendsen and P. A. Madsen, “A turbulent bore on a beach,” J. Fluid Mech., 148, 73–96 (1984).

    Article  ADS  Google Scholar 

  9. V. Yu. Liapidevskii, “Structure of a turbulent bore in a homogeneous liquid,” J. Appl. Mech. Tech. Phys., 40, No. 2, 238–248 (1999).

    MATH  MathSciNet  Google Scholar 

  10. V. Yu. Liapidevskii and V. M. Teshukov, Mathematical Models for the Propagation of Long Waves in an Inhomogeneous Fluid [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2000).

    Google Scholar 

  11. P. M. Naghdi and L. Vongsarnpigoon, “The downstream flow beyond an obstacle,” J. Fluid Mech., 162, 223–236 (1986).

    Article  ADS  Google Scholar 

  12. F. Serre, “Contribution à l’étude des écoulements permanents et variables dans les canaux,” La Houille Blanche, 8, No. 3, 374–388 (1953).

    MathSciNet  Google Scholar 

  13. J.-M. Vanden-Broeck, “Free surface flow over an obstruction in a channel,” Phys. Fluids, 30, No. 8, 2315–2317 (1987).

    Article  ADS  MATH  Google Scholar 

  14. S. Shen, “Forced solitary waves and hydraulic falls in two-layer flow over topography,” J. Fluid Mech., 232, 583–612 (1992).

    Article  ADS  Google Scholar 

  15. Z. Xu, F. Shi, and S. Shen, “A numerical calculation of forced supercritical soliton in single-layer flow,” J. Ocean Univ. (Qingdao), 24, No. 3, 309–319 (1994).

    Google Scholar 

  16. J. W. Miles, “Stationary transcritical channel flow,” J. Fluid Mech., 162, 489–499 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 3–11, May–June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liapidevskii, V.Y., Xu, Z. Breaking of waves of limiting amplitude over an obstacle. J Appl Mech Tech Phys 47, 307–313 (2006). https://doi.org/10.1007/s10808-006-0057-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-006-0057-5

Key words

Navigation