Skip to main content
Log in

Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Different methods for estimating starch in Chlorella vulgaris were compared with the view of establishing a procedure suitable for rapid and accurate determination of starch content in this microalgal species. A close agreement was observed between methods that use perchloric acid and enzymatic methods that use α-amylase and amyloglucosidase to hydrolyze the starch of microalgae grown under different nitrogen culture conditions. Starch values obtained by these methods were significantly higher than those estimated by using hydrochloric acid as solubilizing and hydrolyzing agent. The enzymatic method (EM1) proved to be the most rapid and precise method for microalgal starch quantification. Furthermore, the evaluation of resistant starch by enzymatic methods assayed in nitrogen-sufficient and nitrogen-starved cells showed that no formation of this type of starch occurred in microalgae, meaning that this should not interfere with starch content determinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15:584–593

    Article  CAS  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Chader S, Hacene H, Agathos SN (2009) Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int J Hydrogen Energ 34:4941–4946

    Article  CAS  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47

    Article  CAS  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technol 102:71–81

    Article  CAS  Google Scholar 

  • Chow PS, Landhäusser SM (2004) A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol 24:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Dragone G, Fernandes B, Vicente A, Teixeira JA (2010) Third generation biofuels from microalgae. In: Vilas AM (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Research Center, Badajoz, pp 1355–1366

    Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energ 88:3331–3335

    Article  CAS  Google Scholar 

  • Esposito S, Guerriero G, Vona V, Di Martino RV, Carfagna S, Rigano C (2006) Glucose-6P dehydrogenase in Chlorella sorokiniana (211/8 k): an enzyme with unusual characteristics. Planta 223:796–804

    Article  PubMed  CAS  Google Scholar 

  • Fernandes B, Dragone G, Teixeira J, Vicente A (2010) Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl Biochem Biotechnol 161:218–226

    Article  PubMed  CAS  Google Scholar 

  • Fontana J, Passos M, Baron M, Mendes S, Ramos L (2001) Cassava starch maltodextrinization/monomerization through thermopressurized aqueous phosphoric acid hydrolysis. Appl Biochem Biotechnol 91–93:469–478

    Article  PubMed  Google Scholar 

  • Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-Zapata E, Pérez-Álvarez JA (2010) Resistant starch as functional ingredient: a review. Food Res Int 43:931–942

    Article  CAS  Google Scholar 

  • Ghiena C, Schulz M, Schnabl H (1993) Starch degradation and distribution of the starch-degrading enzymes in Vicia faba leaves (diurnal oscillation of amylolytic activity and starch content in chloroplasts). Plant Physiol 101:73–79

    PubMed  CAS  Google Scholar 

  • Maršálková B, Širmerová M, Kuřec M, Brányik T, Brányiková I, Melzoch K, Zachleder V (2010) Microalgae Chlorella sp. as an alternative source of fermentable sugars. Chem Eng Trans 21:1279–1284

    Google Scholar 

  • Megazyme (2009) Total starch assay procedure (amyloglucosidase/α-amylase method). Megazyme International Ireland Ltd., Wicklow, Ireland

    Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  PubMed  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37:52–68

    Article  CAS  Google Scholar 

  • Oren R, Schulze ED, Werk KS, Meyer J, Schneider BU, Heilmeier H (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline. Oecologia 75:25–37

    Article  Google Scholar 

  • Raessler M, Wissuwa B, Breul A, Unger W, Grimm T (2010) Chromatographic analysis of major non-structural carbohydrates in several wood species—an analytical approach for higher accuracy of data. Anal Method 2:532–538

    Article  CAS  Google Scholar 

  • Rose R, Rose CL, Omi SK, Forry KR, Durall DM, Bigg WL (1991) Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. J Agr Food Chem 39:2–11

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564

    Article  PubMed  CAS  Google Scholar 

  • Tharanathan RN, Mahadevamma S (2003) Grain legumes—a boon to human nutrition. Trends Food Sci Tech 14:507–518

    Article  CAS  Google Scholar 

  • Zemke-White WL, Clements KD (1999) Chlorophyte and rhodophyte starches as factors in diet choice by marine herbivorous fish. J Exp Mar Biol Ecol 240:137–149

    Article  Google Scholar 

Download references

Acknowledgement

This research work was supported by the grants SFRH/BD/44724/2008 (Bruno Fernandes) from Fundação para a Ciência e a Tecnologia (Portugal) and SFRH/BPD/44935/2008 (Giuliano Dragone). The authors also acknowledge the financial support received through the projects INNOVALGAE (FCT PTDC/AAC-AMB/108511/2008) and ALGANOL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Dragone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, B., Dragone, G., Abreu, A.P. et al. Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods. J Appl Phycol 24, 1203–1208 (2012). https://doi.org/10.1007/s10811-011-9761-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9761-5

Keywords

Navigation