Skip to main content
Log in

Influence of temperature, light and nutrients on the growth rates of the macroalga Gracilaria domingensis in synthetic seawater using experimental design

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In the present study, the daily relative growth rates (DRGR, in percent per day) of the red macroalga Gracilaria domingensis in synthetic seawater was investigated for the combined influence of five factors, i.e., light (L), temperature (T), nitrate (N), phosphate (P), and molybdate (M), using a statistical design method. The ranges of the experimental cultivation conditions were T, 18–26°C; L, 74–162 μmol photons m−2 s−1; N, 40–80 μmol L−1; P, 8–16 μmol L−1; and M, 1–5 nmol L−1. The optimal conditions, which resulted in a maximum growth rate of ≥6.4% d−1 from 7 to 10 days of cultivation, were determined by analysis of variance (ANOVA) multivariate factorial analysis (with a 25 full factorial design) to be L, 74 μmol photons m−2 s−1; T, 26°C; N, 80 μmol L−1; P, 8 μmol L−1; and M, 1 nmol L−1. In additional, these growth rate values are close to the growth rate values in natural medium (von Stosch medium), i.e., 6.5–7.0% d−1. The results analyzed by the ANOVA indicate that the factors N and T are highly significant linear terms, X L, (α = 0.05). On the other hand, the only significant quadratic term (X Q) was that for L. Statistically significant interactions between two different factors were found between T vs. L and N vs. T. Finally, a two-way (linear/quadratic interaction) model provided a quite reasonable correlation between the experimental and predicted DRGR values (R 2adjusted  = 0.9540).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aparicio PJ, Quiñones MA (1991) Blue light, a positive switch signal for nitrate and nitrite uptake by the green alga Monoraphidium braunii. Plant Physiol 95:374–378

    Article  PubMed  CAS  Google Scholar 

  • Berges JA, Cochlan WP, Harrison PJ (1995) Laboratory and field responses of algal nitrate reductase to diel periodicity in irradiance, nitrate exhaustion, and the presence of ammonium. Mar Ecol Prog Ser 124:259–269

    Article  CAS  Google Scholar 

  • Berges JA, Frankilin D, Harrison PJ (2001) Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J Phycol 37:1138–1145

    Article  Google Scholar 

  • Blust R, Verheyen E, Doumen C, Decleir W (1986) Effect of complexation by organic ligands on the bioavailability of copper to the Brine Shrimp, Artemia sp. Aquat Toxicol 8:211–221

    Article  CAS  Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol 146:60–78

    Article  Google Scholar 

  • Cardozo KHM, Marques LG, Cravalho VM, Carignan MO, Pinto E, Marinho-Soriano E, Colepicolo P (2011) Analyses of photoprotective compounds in red algae from the Brazilian coast. Rev Bras Farmacogn 21:202–208

    Article  CAS  Google Scholar 

  • Cole JJ, Howarth RW, Nolan SS, Marino R (1986) Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry 179:179–196

    Article  Google Scholar 

  • Collén PN, Collén J, Reis MS, Pedersén M, Setubal JC, Varani AM, Colepicolo P, Oliveira MC (2011) Analysis of expressed sequence tags from the agarophyte Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol doi:10.1007/s10811-011-9681-4

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • Falcão VR, Tonon AP, Oliveira MC, Colepicolo P (2008) RNA Isolation method for polysaccharide rich algae: agar producing Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 20:9–12

    Article  Google Scholar 

  • Falcão VR, Mariana C, Oliveira MC, Colepicolo P (2010) Molecular characterization of nitrate reductase gene and its expression in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 22:613–622

    Article  Google Scholar 

  • Fargosova A (1998) Accumulation and toxic effects of Cu2+, Cu+, Mn2+, Vo 3-4 , Ni2+, and MoO 2-4 and their associations: influences on respiratory rate and chlorophyll a con tent the Green alga Scenedesmus quadricauda. J Trace Microprobe Tech 16:481–490

    Google Scholar 

  • Gao Y, Smith GJ, Alberte RS (1992) Light regulation of nitrate reductase in Ulva fenestrata (Chlorophyceae). Mar Biol 112:691–696

    Article  CAS  Google Scholar 

  • Goupy J, Creighton L (2007) Introduction to design of experiments: with JMP® examples. SAS Institute Inc., Cary

    Google Scholar 

  • Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Filho JM, Torres RP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590

    Article  CAS  Google Scholar 

  • Gressler V, Fujii MT, Martins AP, Colepicolo P, Filho JM, Pinto E (2011) Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agric 91:1687–1692

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Elsevier, London, pp 21–33

    Google Scholar 

  • Hershey DR (1991) Plant light measurement and calculation. Am Biol Teach 53:351–353

    Article  Google Scholar 

  • Iwasaki H (1961) The life-cycle of Porphyra tenera in vitro. Biol Bull 121:173–187

    Article  Google Scholar 

  • Kakita H, Kamishima H (2006) Effects of environmental factors and metal ions on growth of the red alga Gracilaria chorda Holmes (Gracilariales, Rhodophyta). J Appl Phycol 18:469–474

    Article  CAS  Google Scholar 

  • Kaladharan P (2000) Artificial seawater for seaweed culture. Indian J Fish 47:257–259

    Google Scholar 

  • Lee KS, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175

    Article  Google Scholar 

  • Lewicki P, Hill T (2005) Statistics: methods and applications. Statsoft, Tulsa

    Google Scholar 

  • Mendes LF, Bastos EL, Desjardin DE, Stevani CV (2008) Influence of culture conditions on mycelial growth and bioluminescence of Gerronema viridilucens. FEMS Microbiol Lett 282:132–139

    Article  PubMed  CAS  Google Scholar 

  • Murano E (1995) Chemical structure and quality of agar from Gracilaria. J Appl Phycol 7:245–254

    Article  CAS  Google Scholar 

  • Oliveira EC, Plastino EM (1994) Gracilariaceae. In: Akatsuka I (ed) Biology of economic algae. SSB Academic, The Hague, pp 185–226

    Google Scholar 

  • Pinto E, Van Nieuwerburgh L, Barros MP, Pedersén M, Colepicolo P, Snoeijs P (2003) Density-dependent patterns of thiamine and pigments in production in Nitzschia microcephala. Phytochemistry 63:155–163

    Article  PubMed  CAS  Google Scholar 

  • Raikar SV, Iima M, Fujita Y (2001) Effect of temperature, salinity and intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian J Mar Sci 30:98–104

    Google Scholar 

  • Rossa MM, Oliveira MM, Okamoto OK, Lopes PF, Colepicolo P (2002) Effect of visible light on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). J Appl Phycol 14:151–157

    Article  CAS  Google Scholar 

  • Sigaud-Kutner TCS, Pinto E, Okamoto OK, Latorre LR, Colepicolo P (2002) Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. Physiol Plant 114:566–572

    Article  PubMed  CAS  Google Scholar 

  • Steentoft M, Farham WF (1997) Northern distribution boundaries and thermal requirements of Gracilaria and Gracilariopsis (Gracilariales, Rhodophyta) in Atlantic Europe and Scandinavia. Nord J Bot 5:87–93

    Article  Google Scholar 

  • Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. J Hazard Mat 171:551–562

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the present study was provided by INCT-Redoxoma and the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP 09/54718-4 (L.F.M.), Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq 143542/2008-7 (L.A.S.V.), and Capes (A.P.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando Mendes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, L.F., Vale, L.A.S., Martins, A.P. et al. Influence of temperature, light and nutrients on the growth rates of the macroalga Gracilaria domingensis in synthetic seawater using experimental design. J Appl Phycol 24, 1419–1426 (2012). https://doi.org/10.1007/s10811-012-9797-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9797-1

Keywords

Navigation