Skip to main content
Log in

Epigenetics and its role in male infertility

  • REVIEW
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Male infertility is a common and complex problem affecting 1 in 20 men. Despite voluminous research in this field, in many cases, the underlying causes are unknown. Epigenetic factors play an important role in male infertility and these have been studied extensively. Epigenetic modifications control a number of processes within the body, but this review will concentrate on male fertility and the consequences of aberrant epigenetic regulation/modification. Many recent studies have identified altered epigenetic profiles in sperm from men with oligozoospermia and oligoasthenoteratozoospermia. During gametogenesis and germ cell maturation, germ cells undergo extensive epigenetic reprogramming that involves the establishment of sex-specific patterns in the sperm and oocytes. Increasing evidence suggests that genetic and environmental factors can have negative effects on epigenetic processes controlling implantation, placentation and fetal growth. This review provides an overview of the epigenetic processes (histone-to-protamine exchange and epigenetic reprogramming post-fertilization), aberrant epigenetic reprogramming and its association with fertility, possible risks for ART techniques, testicular cancer and the effect of environmental factors on the epigenetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563–5.

    Article  Google Scholar 

  2. Gilbert SF, Sarkar S. Embracing complexity: organicism for the 21st century. Dev Dyn. 2000;219(1):1–9. doi:10.1002/1097-0177(2000) 9999:9999<::AID-DVDY1036>3.0.CO;2-A.

    Article  PubMed  CAS  Google Scholar 

  3. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–73. doi:10.1038/nrg887nrg887.

    Article  PubMed  CAS  Google Scholar 

  4. Talbert PB, Henikoff S. Spreading of silent chromatin: inaction at a distance. Nat Rev Genet. 2006;7(10):793–803. doi:10.1038/nrg1920.

    Article  PubMed  CAS  Google Scholar 

  5. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97. doi:10.1016/j.tibs.2005.12.008.

    Article  PubMed  CAS  Google Scholar 

  6. Richardson BC. Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr. 2002;132(8 Suppl):2401S–5S.

    PubMed  CAS  Google Scholar 

  7. Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988;203(4):971–83.

    Article  PubMed  CAS  Google Scholar 

  8. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–20. doi:10.1038/890.

    Article  PubMed  CAS  Google Scholar 

  9. Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science. 1983;220(4601):1055–7.

    Article  PubMed  CAS  Google Scholar 

  10. Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A. 2002;99(6):3740–5. doi:10.1073/pnas.052410099052410099.

    Article  PubMed  CAS  Google Scholar 

  11. Issa JP. CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol. 2000;249:101–18.

    Article  PubMed  CAS  Google Scholar 

  12. Lachner M, O’Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci. 2003;116(Pt 11):2117–24. doi:10.1242/jcs.00493116/11/2117.

    Article  PubMed  CAS  Google Scholar 

  13. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001;414(6861):277–83. doi:10.1038/3510450835104508.

    Article  PubMed  CAS  Google Scholar 

  14. Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 2002;21(24):6842–52.

    Article  PubMed  CAS  Google Scholar 

  15. Tariq M, Saze H, Probst AV, Lichota J, Habu Y, Paszkowski J. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci U S A. 2003;100(15):8823–7. doi:10.1073/pnas.14329391001432939100.

    Article  PubMed  CAS  Google Scholar 

  16. Adenot PG, Mercier Y, Renard JP, Thompson EM. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development. 1997;124(22):4615–25.

    PubMed  CAS  Google Scholar 

  17. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241(1):172–82. doi:10.1006/dbio.2001.0501S0012160601905019.

    Article  PubMed  CAS  Google Scholar 

  18. Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. Cell. 2007;128(4):747–62. doi:10.1016/j.cell.2007.02.010.

    Article  PubMed  CAS  Google Scholar 

  19. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14(Spec No 1):R47–58. doi:10.1093/hmg/ddi114.

    Article  PubMed  CAS  Google Scholar 

  20. Allegrucci C, Thurston A, Lucas E, Young L. Epigenetics and the germline. Reproduction. 2005;129(2):137–49. doi:10.1530/rep.1.00360.

    Article  PubMed  CAS  Google Scholar 

  21. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434(7033):583–9. doi:10.1038/nature03368.

    Article  PubMed  CAS  Google Scholar 

  22. McLaren A. Primordial germ cells in the mouse. Dev Biol. 2003;262(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  23. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol. 2005;278(2):440–58. doi:10.1016/j.ydbio.2004.11.025.

    Article  PubMed  CAS  Google Scholar 

  24. Payne C, Braun RE. Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev Biol. 2006;293(2):461–72. doi:10.1016/j.ydbio.2006.02.013.

    Article  PubMed  CAS  Google Scholar 

  25. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107(3):323–37.

    Article  PubMed  CAS  Google Scholar 

  26. Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, Lee JT. Postmeiotic sex chromatin in the male germline of mice. Curr Biol. 2006;16(7):660–7. doi:10.1016/j.cub.2006.01.066.

    Article  PubMed  CAS  Google Scholar 

  27. Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell. 2006;10(4):521–9. doi:10.1016/j.devcel.2006.02.009.

    Article  PubMed  CAS  Google Scholar 

  28. Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci U S A. 2005;102(8):2808–13. doi:10.1073/pnas.0406060102.

    Article  PubMed  CAS  Google Scholar 

  29. Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, Khochbin S. Establishment of male-specific epigenetic information. Gene. 2005;345(2):139–53. doi:10.1016/j.gene.2004.12.004.

    Article  PubMed  CAS  Google Scholar 

  30. Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. A unique configuration of genome-wide DNA methylation patterns in the testis. Proc Natl Acad Sci U S A. 2007;104(1):228–33. doi:10.1073/pnas.0607521104.

    Article  PubMed  CAS  Google Scholar 

  31. Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD. Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev. 1992;31(3):170–81. doi:10.1002/mrd.1080310303.

    Article  PubMed  CAS  Google Scholar 

  32. Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sele B, Khochbin S, Rousseaux S. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol. 2000;79(12):950–60.

    Article  PubMed  CAS  Google Scholar 

  33. Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002;34(6):384–90.

    Article  PubMed  CAS  Google Scholar 

  34. Govin J, Lestrat C, Caron C, Pivot-Pajot C, Rousseaux S, Khochbin S. Histone acetylation-mediated chromatin compaction during mouse spermatogenesis. Ernst Schering Res Found Workshop. 2006;57:155–72.

    Article  PubMed  CAS  Google Scholar 

  35. Klenova EM, Morse 3rd HC, Ohlsson R, Lobanenkov VV. The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol. 2002;12(5):399–414.

    Article  PubMed  CAS  Google Scholar 

  36. Schoenherr CJ, Levorse JM, Tilghman SM. CTCF maintains differential methylation at the Igf2/H19 locus. Nat Genet. 2003;33(1):66–9. doi:10.1038/ng1057ng1057.

    Article  PubMed  CAS  Google Scholar 

  37. Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov AA, Cui H, Niemitz EL, Rasko JE, Docquier FM, Kistler M, Breen JJ, Zhuang Z, Quitschke WW, Renkawitz R, Klenova EM, Feinberg AP, Ohlsson R, Morse 3rd HC, Lobanenkov VV. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A. 2002;99(10):6806–11. doi:10.1073/pnas.09212369999/10/6806.

    Article  PubMed  CAS  Google Scholar 

  38. Emery BR, Carrell DT. The effect of epigenetic sperm abnormalities on early embryogenesis. Asian J Androl. 2006;8(2):131–42. doi:10.1111/j.1745-7262.2006.00127.x.

    Article  PubMed  CAS  Google Scholar 

  39. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91. doi:10.1038/3506606535066065.

    Article  PubMed  CAS  Google Scholar 

  40. Kidd SA, Eskenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril. 2001;75(2):237–48.

    Article  PubMed  CAS  Google Scholar 

  41. Kuhnert B, Nieschlag E. Reproductive functions of the ageing male. Hum Reprod Update. 2004;10(4):327–39. doi:10.1093/humupd/dmh030dmh030.

    Article  PubMed  Google Scholar 

  42. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs EW, Glaser RL, Pearson FS, Evenson D. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci U S A. 2006;103(25):9601–6. doi:10.1073/pnas.0506468103.

    Article  PubMed  CAS  Google Scholar 

  43. Benchaib M, Ajina M, Lornage J, Niveleau A, Durand P, Guerin JF. Quantitation by image analysis of global DNA methylation in human spermatozoa and its prognostic value in in vitro fertilization: a preliminary study. Fertil Steril. 2003;80(4):947–53.

    Article  PubMed  Google Scholar 

  44. Ooi SL, Henikoff S. Germline histone dynamics and epigenetics. Curr Opin Cell Biol. 2007;19(3):257–65. doi:10.1016/j.ceb.2007.04.015.

    Article  PubMed  CAS  Google Scholar 

  45. Ito T. Role of histone modification in chromatin dynamics. J Biochem. 2007;141(5):609–14. doi:10.1093/jb/mvm091.

    Article  PubMed  CAS  Google Scholar 

  46. Biermann K, Steger K. Epigenetics in male germ cells. J Androl. 2007;28(4):466–80. doi:10.2164/jandrol.106.002048.

    Article  PubMed  CAS  Google Scholar 

  47. Schaefer CB, Ooi SK, Bestor TH, Bourc’his D. Epigenetic decisions in mammalian germ cells. Science. 2007;316(5823):398–9. doi:10.1126/science.1137544.

    Article  PubMed  CAS  Google Scholar 

  48. Faure AK, Pivot-Pajot C, Kerjean A, Hazzouri M, Pelletier R, Peoc’h M, Sele B, Khochbin S, Rousseaux S. Misregulation of histone acetylation in Sertoli cell-only syndrome and testicular cancer. Mol Hum Reprod. 2003;9(12):757–63.

    Article  PubMed  CAS  Google Scholar 

  49. Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, Guerin JF. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18(5):1023–8.

    Article  PubMed  Google Scholar 

  50. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9. doi:10.1126/science.1108190.

    Article  PubMed  CAS  Google Scholar 

  51. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–9. doi:10.1126/science.10658481065848.

    Article  PubMed  Google Scholar 

  52. Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129(8):1983–93.

    PubMed  CAS  Google Scholar 

  53. Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. 2005;438(7066):374–8. doi:10.1038/nature04112.

    Article  PubMed  CAS  Google Scholar 

  54. Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A, Zangeneh M, Lau L, Virtanen C, Wang SC, Petronis A. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet. 2006;79(1):67–84. doi:10.1086/504729.

    Article  PubMed  CAS  Google Scholar 

  55. Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, Sasaki H, Yaegashi N, Arima T. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–51. doi:10.1093/hmg/ddm187.

    Article  PubMed  CAS  Google Scholar 

  56. Marques CJ, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–2. doi:10.1016/S0140-6736(04)16256-9S0140-6736(04)16256-9.

    Article  PubMed  CAS  Google Scholar 

  57. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet. 2001;28(1):82–6. doi:10.1038/8831388313.

    PubMed  CAS  Google Scholar 

  58. Wu JY, Means AR. Ca(2+)/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix. J Biol Chem. 2000;275(11):7994–9.

    Article  PubMed  CAS  Google Scholar 

  59. Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet. 2000;25(4):448–52. doi:10.1038/78153.

    Article  PubMed  CAS  Google Scholar 

  60. Balhorn R, Cosman M, Thornton K, Krishnan VV, Corzett M, Bench G, Kramer C, Lee IV J, Hud NV, Allen M, Priety M, Meyer-IIse W, Brown J, Kirz J, Zhang X, Bradbury E, Maki G, Braun R, Breen W. Protamine mediated condensation of DNA in mammalian sperm. In: Gagnon C, editor. The male gamete: from basic knowledge to clinical applications. Vienna: Cache River Press; 1999. p. 55–70.

    Google Scholar 

  61. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.

    PubMed  CAS  Google Scholar 

  62. Corzett M, Mazrimas J, Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev. 2002;61(4):519–27. doi:10.1002/mrd.10105.

    Article  PubMed  CAS  Google Scholar 

  63. Chevaillier P, Mauro N, Feneux D, Jouannet P, David G. Anomalous protein complement of sperm nuclei in some infertile men. Lancet. 1987;2(8562):806–7.

    Article  PubMed  CAS  Google Scholar 

  64. Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52–5.

    Article  PubMed  CAS  Google Scholar 

  65. Belokopytova IA, Kostyleva EI, Tomilin AN, Vorob’ev VI. Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol Reprod Dev. 1993;34(1):53–7. doi:10.1002/mrd.1080340109.

    Article  PubMed  CAS  Google Scholar 

  66. Carrell DT, Emery BR, Liu L. Characterization of aneuploidy rates, protamine levels, ultrastructure, and functional ability of round-headed sperm from two siblings and implications for intracytoplasmic sperm injection. Fertil Steril. 1999;71(3):511–6.

    Article  PubMed  CAS  Google Scholar 

  67. Razavi S, Nasr-Esfahani MH, Mardani M, Mafi A, Moghdam A. Effect of human sperm chromatin anomalies on fertilization outcome post-ICSI. Andrologia. 2003;35(4):238–43.

    Article  PubMed  CAS  Google Scholar 

  68. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306. doi:10.1093/humrep/deh798.

    Article  PubMed  CAS  Google Scholar 

  69. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66. doi:10.1038/ng1990.

    Article  PubMed  CAS  Google Scholar 

  70. Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J, Hoeijmakers JH, Grootegoed JA. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol. 1999;207(2):322–33. doi:10.1006/dbio.1998.9155.

    Article  PubMed  CAS  Google Scholar 

  71. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13(3):313–27. doi:10.1093/humupd/dml057.

    Article  PubMed  CAS  Google Scholar 

  72. Kleene KC. Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res. 2003;103(3–4):217–24. doi:10.1159/00007680776807.

    PubMed  CAS  Google Scholar 

  73. Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW. Sequence-specific packaging of DNA in human sperm chromatin. Science. 1987;236(4804):962–4.

    Article  PubMed  CAS  Google Scholar 

  74. Gosden R, Trasler J, Lucifero D, Faddy M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361(9373):1975–7. doi:10.1016/S0140-6736(03)13592-1.

    Article  PubMed  Google Scholar 

  75. Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet. 2004;13(8):839–49. doi:10.1093/hmg/ddh104ddh104.

    Article  PubMed  CAS  Google Scholar 

  76. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74(4):599–609. doi:10.1086/382897S0002-9297(07)61887-4.

    Article  PubMed  CAS  Google Scholar 

  77. Thompson JR, Williams CJ. Genomic imprinting and assisted reproductive technology: connections and potential risks. Semin Reprod Med. 2005;23(3):285–95. doi:10.1055/s-2005-872457.

    Article  PubMed  CAS  Google Scholar 

  78. Horsthemke B, Buiting K. Imprinting defects on human chromosome 15. Cytogenet Genome Res. 2006;113(1–4):292–9. doi:10.1159/000090844.

    Article  PubMed  CAS  Google Scholar 

  79. Mann MR, Lee SS, Doherty AS, Verona RI, Nolen LD, Schultz RM, Bartolomei MS. Selective loss of imprinting in the placenta following preimplantation development in culture. Development. 2004;131(15):3727–35. doi:10.1242/dev.01241dev.01241.

    Article  PubMed  CAS  Google Scholar 

  80. Bennett-Baker PE, Wilkowski J, Burke DT. Age-associated activation of epigenetically repressed genes in the mouse. Genetics. 2003;165(4):2055–62.

    PubMed  CAS  Google Scholar 

  81. Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 2003;33(1):70–4. doi:10.1038/ng1067ng1067.

    Article  PubMed  CAS  Google Scholar 

  82. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54. doi:10.1038/ng1089ng1089.

    Article  PubMed  CAS  Google Scholar 

  83. Chang AS, Moley KH, Wangler M, Feinberg AP, Debaun MR. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril. 2005;83(2):349–54. doi:10.1016/j.fertnstert.2004.07.964.

    Article  PubMed  Google Scholar 

  84. Kelly TL, Li E, Trasler JM. 5-aza-2′-deoxycytidine induces alterations in murine spermatogenesis and pregnancy outcome. J Androl. 2003;24(6):822–30.

    PubMed  CAS  Google Scholar 

  85. Benchaib M, Braun V, Ressnikof D, Lornage J, Durand P, Niveleau A, Guerin JF. Influence of global sperm DNA methylation on IVF results. Hum Reprod. 2005;20(3):768–73. doi:10.1093/humrep/deh684.

    Article  PubMed  CAS  Google Scholar 

  86. Bosl GJ, Motzer RJ. Testicular germ-cell cancer. N Engl J Med. 1997;337(4):242–53. doi:10.1056/NEJM199707243370406.

    Article  PubMed  CAS  Google Scholar 

  87. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4(2):143–53. doi:10.1038/nrc1279nrc1279.

    Article  PubMed  CAS  Google Scholar 

  88. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    Article  PubMed  CAS  Google Scholar 

  89. Ehrlich M. The controversial denouement of vertebrate DNA methylation research. Biochemistry (Mosc). 2005;70(5):568–75.

    Article  CAS  Google Scholar 

  90. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300(5618):489–92. doi:10.1126/science.1083558300/5618/489.

    Article  PubMed  CAS  Google Scholar 

  91. Bestor TH. Cytosine methylation and the unequal developmental potentials of the oocyte and sperm genomes. Am J Hum Genet. 1998;62(6):1269–73. doi:10.1086/301891.

    Article  PubMed  CAS  Google Scholar 

  92. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93. doi:10.1126/science.1063443293/5532/1089.

    Article  PubMed  CAS  Google Scholar 

  93. Lind GE, Skotheim RI, Lothe RA. The epigenome of testicular germ cell tumors. APMIS. 2007;115(10):1147–60. doi:10.1111/j.1600-0463.2007.apm_660.xml.x.

    Article  PubMed  CAS  Google Scholar 

  94. Smiraglia DJ, Szymanska J, Kraggerud SM, Lothe RA, Peltomaki P, Plass C. Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene. 2002;21(24):3909–16. doi:10.1038/sj.onc.1205488.

    Article  PubMed  CAS  Google Scholar 

  95. Almstrup K, Hoei-Hansen CE, Nielsen JE, Wirkner U, Ansorge W, Skakkebaek NE, Rajpert-De Meyts E, Leffers H. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours. Br J Cancer. 2005;92(10):1934–41. doi:10.1038/sj.bjc.6602560.

    Article  PubMed  CAS  Google Scholar 

  96. Hoffmann MJ, Muller M, Engers R, Schulz WA. Epigenetic control of CTCFL/BORIS and OCT4 expression in urogenital malignancies. Biochem Pharmacol. 2006;72(11):1577–88. doi:10.1016/j.bcp.2006.06.020.

    Article  PubMed  CAS  Google Scholar 

  97. de Jong J, Looijenga LH. Stem cell marker OCT3/4 in tumor biology and germ cell tumor diagnostics: history and future. Crit Rev Oncog. 2006;12(3–4):171–203.

    PubMed  Google Scholar 

  98. Mitchell V, Steger K, Marchetti C, Herbaut JC, Devos P, Rigot JM. Cellular expression of protamine 1 and 2 transcripts in testicular spermatids from azoospermic men submitted to TESE-ICSI. Mol Hum Reprod. 2005;11(5):373–9. doi:10.1093/molehr/gah169.

    Article  PubMed  CAS  Google Scholar 

  99. Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development. 2002;129(8):1807–17.

    PubMed  CAS  Google Scholar 

  100. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A. 2003;100(5):2538–43. doi:10.1073/pnas.04367761000436776100.

    Article  PubMed  CAS  Google Scholar 

  101. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004;20(1):63–8.

    Article  PubMed  CAS  Google Scholar 

  102. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  PubMed  CAS  Google Scholar 

  103. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63. doi:10.1038/nature02625nature02625.

    Article  PubMed  CAS  Google Scholar 

  104. MacLennan NK, James SJ, Melnyk S, Piroozi A, Jernigan S, Hsu JL, Janke SM, Pham TD, Lane RH. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics. 2004;18(1):43–50. doi:10.1152/physiolgenomics.00042.200400042.2004.

    Article  PubMed  Google Scholar 

  105. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97(6):1064–73. doi:10.1017/S000711450769196X.

    Article  PubMed  CAS  Google Scholar 

  106. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135(6):1382–6.

    PubMed  CAS  Google Scholar 

  107. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–54. doi:10.1038/nn1276nn1276.

    Article  PubMed  CAS  Google Scholar 

  108. Meaney MJ, Szyf M, Seckl JR. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med. 2007;13(7):269–77. doi:10.1016/j.molmed.2007.05.003.

    Article  PubMed  CAS  Google Scholar 

  109. Waterland RA, Lin JR, Smith CA, Jirtle RL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet. 2006;15(5):705–16. doi:10.1093/hmg/ddi484.

    Article  PubMed  CAS  Google Scholar 

  110. Poulsen P, Esteller M, Vaag A, Fraga MF. The epigenetic basis of twin discordance in age-related diseases. Pediatr Res. 2007;61(5 Pt 2):38R–42R. doi:10.1203/pdr.0b013e31803c7b98.

    Article  PubMed  Google Scholar 

  111. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9. doi:10.1073/pnas.0500398102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal.

Additional information

Capsule

Epigenetic mechanisms regulate germ cell development and differentiation. Sperm epigenome is critical for optimal embryogenesis. Sperm from infertile men are prone to epigenetic instability and this may lead to increased incidence of imprinting defects in children conceived by advanced assisted reproductive procedures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dada, R., Kumar, M., Jesudasan, R. et al. Epigenetics and its role in male infertility. J Assist Reprod Genet 29, 213–223 (2012). https://doi.org/10.1007/s10815-012-9715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9715-0

Keywords

Navigation