Skip to main content
Log in

Behavior of mouse spermatogonial stem-like cells on an electrospun nanofibrillar matrix

  • Stem Cell Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Spermatogonial stem cells are affected by the interactions of extrinsic signals produced by components of the microenvironment niche, in addition to the chemical and physical properties of the extracellular matrix. Therefore, this study was initiated to assess the interaction of these cells on a synthetic nanofibrillar extracellular matrix that mimicked the geometry and nanotopography of the basement membrane for cellular growth.

Methods

This study has used a variety of experimental approaches to investigate the interaction of mouse neonatal-derived spermatogonial stem-like cells on a synthetic random oriented three-dimensional nanofibrillar matrix composed of electrospun polyamide nanofibers (Ultra-Web™).

Results

Spermatogonial stem-like cell colonies were characterized by their ability to express α6-integrin, Thy-1, PLZF, and β1-integrin. After culture of cells on the nanofibrillar surfaces for 7 days, the number of colonies, the number of cells in each colony, and the average area of colonies were increased (P < 0.05). However, the expression difference of related markers in both groups was not significant. A significantly higher proliferation and survival was observed in the nanofibrillar group (P < 0.05). After transplantation into the testes of busulfan-treated adult mice, spermatogonial stem-like cell colonies that were cultured on the nanofibrillar surface demonstrated functionality, as verified by their ability to migrate to the seminiferous basal membrane, where they produced additional colonies.

Conclusions

These results have suggested that electrospun nanofibrillar surfaces could provide a more favorable microenvironment for in vitro short term culture of spermatogonial stem-like cell colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed I, Liu HY, Mamiya PC, Ponery AS, Babu AN, Weik T, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro. J Biomed Mater Res A. 2006;76(4):851–60.

    PubMed  Google Scholar 

  2. Ahmed I, Ponery AS, Nur EKA, Kamal J, Meshel AS, Sheetz MP, Schindler M, Meiners S. Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces. Mol Cell Biochem. 2007;301(1–2):241–9.

    Article  PubMed  CAS  Google Scholar 

  3. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11298–302.

    Article  PubMed  CAS  Google Scholar 

  4. Caires K, Broady J, McLean D. Maintaining the male germline: regulation of spermatogonial stem cells. J Endocrinol. 2010;205(2):133–45.

    Article  PubMed  CAS  Google Scholar 

  5. Cary LA, Han DC, Guan JL. Integrin-mediated signal transduction pathways. Histol Histopathol. 1999;14(3):1001–9.

    PubMed  CAS  Google Scholar 

  6. Choudhary RK, Daniels KM, Evock-Clover CM, Garrett W, Capuco AV. Technical note: A rapid method for 5-bromo-2′-deoxyuridine (BrdU) immunostaining in bovine mammary cryosections that retains RNA quality. J Dairy Sci. 2010;93(6):2574–9.

    Article  PubMed  CAS  Google Scholar 

  7. Dalby MJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS. Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Eng. 2002;8(6):1099–108.

    Article  PubMed  CAS  Google Scholar 

  8. Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS, Fausto N. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci U S A. 2006;103(26):9912–7.

    Article  PubMed  CAS  Google Scholar 

  9. de Rooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction. 2001;121(3):347–54.

    Article  PubMed  Google Scholar 

  10. Delgado-Rivera R, Harris SL, Ahmed I, Babu AN, Patel RP, Ayres V, Flowers D, Meiners S. Increased FGF-2 secretion and ability to support neurite outgrowth by astrocytes cultured on polyamide nanofibrillar matrices. Matrix Biol. 2009;28(3):137–47.

    Article  PubMed  CAS  Google Scholar 

  11. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–7.

    Article  PubMed  CAS  Google Scholar 

  12. Ehmcke J, Hubner K, Scholer HR, Schlatt S. Spermatogonia: origin, physiology and prospects for conservation and manipulation of the male germ line. Reprod Fertil Dev. 2006;18(1–2):7–12.

    Article  PubMed  Google Scholar 

  13. Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N, Baharvand H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev. 2010;6(4):601–10.

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116(6):769–78.

    Article  PubMed  CAS  Google Scholar 

  15. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010;9(6):518–26.

    Article  PubMed  CAS  Google Scholar 

  16. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  PubMed  CAS  Google Scholar 

  17. Izadyar F, Matthijs-Rijsenbilt JJ, den Ouden K, Creemers LB, Woelders H, de Rooij DG. Development of a cryopreservation protocol for type A spermatogonia. J Androl. 2002;23(4):537–45.

    PubMed  CAS  Google Scholar 

  18. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73.

    Article  PubMed  CAS  Google Scholar 

  19. Kanatsu-Shinohara M, Ikawa M, Takehashi M, Ogonuki N, Miki H, Inoue K, Kazuki Y, Lee J, Toyokuni S, Oshimura M, Ogura A, Shinohara T. Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc Natl Acad Sci U S A. 2006;103(21):8018–23.

    Article  PubMed  CAS  Google Scholar 

  20. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A. 2006;103(8):2480–7.

    Article  PubMed  CAS  Google Scholar 

  21. Kubota H, Brinster RL. Technology insight: In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Clin Pract Endocrinol Metab. 2006;2(2):99–108.

    Article  PubMed  CAS  Google Scholar 

  22. Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater. 2008;3(3):034002.

    Article  PubMed  CAS  Google Scholar 

  23. Legate KR, Wickstrom SA, Fassler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009;23(4):397–418.

    Article  PubMed  CAS  Google Scholar 

  24. Nagano M, Avarbock MR, Brinster RL. Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod. 1999;60(6):1429–36.

    Article  PubMed  CAS  Google Scholar 

  25. Nur EKA, Ahmed I, Kamal J, Babu AN, Schindler M, Meiners S. Covalently attached FGF-2 to three-dimensional polyamide nanofibrillar surfaces demonstrates enhanced biological stability and activity. Mol Cell Biochem. 2008;309(1–2):157–66.

    Article  Google Scholar 

  26. Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun. 2005;331(2):428–34.

    Article  Google Scholar 

  27. Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells. 2006;24(2):426–33.

    Article  Google Scholar 

  28. Oatley JM, Brinster RL. Spermatogonial stem cells. Methods Enzymol. 2006;419:259–82.

    Article  PubMed  CAS  Google Scholar 

  29. Ogawa T, Arechaga JM, Avarbock MR, Brinster RL. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol. 1997;41(1):111–22.

    PubMed  CAS  Google Scholar 

  30. Olie RA, Looijenga LH, Dekker MC, de Jong FH, van Dissel-Emiliani FM, de Rooij DG, van der Holt B, Oosterhuis JW. Heterogeneity in the in vitro survival and proliferation of human seminoma cells. Br J Cancer. 1995;71(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  31. Piryaei A, Valojerdi MR, Shahsavani M, Baharvand H. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev. 2011;7(1):103–18.

    Article  PubMed  CAS  Google Scholar 

  32. Rahjouei A, Kiani S, Zahabi A, Mehrjardi NZ, Hashemi M, Baharvand H. Interactions of human embryonic stem cell-derived neural progenitors with an electrospun nanofibrillar surface in vitro. Int J Artif Organs. 2011;34(7):559–70.

    Article  PubMed  CAS  Google Scholar 

  33. Schindler M, Ahmed I, Kamal J, Nur EKA, Grafe TH, Young Chung H, Meiners S. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials. 2005;26(28):5624–31.

    Article  PubMed  CAS  Google Scholar 

  34. Shahbazi E, Kiani S, Gourabi H, Baharvand H. Electrospun nanofibrillar surfaces promote neuronal differentiation and function from human embryonic stem cells. Tissue Eng Part A. 2011;17(23–24):3021–31.

    Article  PubMed  CAS  Google Scholar 

  35. Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med. 2011;15(3):468–83.

    Article  PubMed  CAS  Google Scholar 

  36. Tegelenbosch RA, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290(2):193–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant provided from Royan Institute.

Disclosure

None of the authors have any conflicts of interest to disclose and all authors support submission to this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Baharvand.

Additional information

Capsule

Electrospun nanofibrillar surfaces could provide a more favorable microenvironment for in vitro short term maintain of mouse neonatal-derived spermatogonial stem-like cell colonies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakeri, M., Kohram, H., Shahverdi, A. et al. Behavior of mouse spermatogonial stem-like cells on an electrospun nanofibrillar matrix. J Assist Reprod Genet 30, 325–332 (2013). https://doi.org/10.1007/s10815-012-9916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9916-6

Keywords

Navigation