Skip to main content

Advertisement

Log in

Paternal factors contributing to embryo quality

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Advancing maternal and paternal age leads to a decrease in fertility, and hence, many infertile couples opt for assisted reproductive technologies [ART] to achieve biological parenthood. One of the key determinants of achieving a live outcome of ART, embryo quality, depends on both the quality of the oocyte and sperm that have created the embryo. Several studies have explored the effect of oocyte parameters on embryo quality, but the effects of sperm quality on the embryo have not been comprehensively evaluated.

Method

In this review, we assess the effect of various genetic factors of paternal origin on the quality and development of the embryo.

Results

The effects of sperm aneuploidy, sperm chromatin structure, deoxyribonucleic acid [DNA] fragmentation, role of protamines and histones, sperm epigenetic profile, and Y chromosome microdeletions were explored and found to negatively affect embryo quality.

Conclusion

We propose that careful assessment of spermatozoal parameters is essential to achieve embryo development and a healthy live birth. However, the heterogeneity in test results and the different approaches of assessing a single sperm parameter highlight the need for more research and the development of standardized protocols to assess the role of sperm factors affecting embryo quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. CDC National Survey of Family Growth 2/6/15, CDC National Vital Statistics Reports 1/4/17.

  2. De la Rochebrochard E, Thonneau P. Paternal age≥ 40 years: an important risk factor for infertility. Am J Obstet Gynecol. 2003;189:901–5.

    Google Scholar 

  3. Simon L, Emery BR, Carrell DT. Review: impact of sperm DNA damage in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56.

    PubMed  Google Scholar 

  4. Chapuis A, Gala A, Ferrières-Hoa A, Mullet T, Bringer-Deutsch S, Vintejoux E, et al. Sperm quality and paternal age: effect on blastocyst formation and pregnancy rates. Basic Clin Androl. 2017;27:2.

    PubMed  PubMed Central  Google Scholar 

  5. Sharpe RM. Sperm counts and fertility in men: a rocky road ahead: Science & Society Series on sex and science. EMBO Rep. 2012;13:398–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Busetto GM, Agarwal A, Virmani A, Antonini G, Ragonesi G, Del Giudice F, et al. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: a double-blind placebo-controlled study. Andrologia. 2018;50:e12927.

    Google Scholar 

  7. Templado C, Vidal F, Estop A. Aneuploidy in human spermatozoa. Cytogenet Genome Res. 2011;133:91–9.

    CAS  PubMed  Google Scholar 

  8. Anifandis G, Markandona O, Dafopoulos K, Messini C, Tsezou A, Dimitraki M, et al. Embryological results of couples undergoing ICSI-ET treatments with males carrying the single nucleotide polymorphism rs175080 of the MLH3 gene. Int J Mol Sci. 2017;18:314.

    PubMed Central  Google Scholar 

  9. Kleiman SE, Yogev L, Lehavi O, Hauser R, Botchan A, Paz G, et al. The likelihood of finding mature sperm cells in men with AZFb or AZFb-c deletions: six new cases and a review of the literature [1994–2010]. Fertil Steril. 2011;95:2005–12.

    CAS  PubMed  Google Scholar 

  10. Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from mother nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21:711–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Laurentino S, Borgmann J, Gromoll J. On the origin of sperm epigenetic heterogeneity. Reproduction. 2016;151:R71–8.

    CAS  PubMed  Google Scholar 

  12. WHO. Laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.

    Google Scholar 

  13. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    CAS  PubMed  Google Scholar 

  14. Sadeghi MR. Low success rate of ART, an illusion, a reality or simply a too high expectation? J Reprod Infertil. 2012;13:123.

    PubMed  PubMed Central  Google Scholar 

  15. Malizia BA, Hacker MR, Penzias AS. Cumulative live-birth rates after in vitro fertilization. N Engl J Med. 2009;360:236–43.

    CAS  PubMed  Google Scholar 

  16. Domar AD, Broome A, Zuttermeister PC, Seibel M, Friedman R. The prevalence and predictability of depression in infertile women. Fertil Steril. 1992;58:1158–63.

    CAS  PubMed  Google Scholar 

  17. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four-and eight-cell stages of preimplantation development. Nature. 1988;332:459.

    CAS  PubMed  Google Scholar 

  18. Boklage CE. Human embryogenesis. In embryogenesis 2012. INTECH. https://doi.org/10.5772/36871.

    Google Scholar 

  19. Magli MC, Jones GM, Lundin K, Van den Abbeel E. Atlas of human embryology: from oocytes to preimplantation embryos. Hum Reprod 2012 ;27: i1.

  20. Cummins JM, Breen TM, Harrison KL, Shaw JM, Wilson LM, Hennessey JF. A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J In Vitro Fert Embryo Transf. 1986;3:284–95.

    CAS  PubMed  Google Scholar 

  21. Wintner EM, Hershko-Klement A, Tzadikevitch K, Ghetler Y, Gonen O, Wintner O, et al. Does the transfer of a poor quality embryo together with a good quality embryo affect the in vitro fertilization [IVF] outcome? J Ovarian Res. 2017;10:2.

    PubMed  PubMed Central  Google Scholar 

  22. Royen E, Mangelschots K, De Neubourg D, Valkenburg M, Van de Meerssche M, Ryckaert G, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod. 1999;14:2345–9.

    PubMed  Google Scholar 

  23. Lazzaroni-Tealdi E, Barad DH, Albertini DF, Yu Y, Kushnir VA, Russell H, et al. Oocyte scoring enhances embryo-scoring in predicting pregnancy chances with IVF where it counts most. PLoS One. 2015;10:e0143632.

    PubMed  PubMed Central  Google Scholar 

  24. Cobo A, Coello A, Remohí J, Serrano J, de los Santos JM, Meseguer M. Effect of oocyte vitrification on embryo quality: time-lapse analysis and morphokinetic evaluation. Fertil Steril. 2017;108:491–7.

    PubMed  Google Scholar 

  25. Demko ZP, Simon AL, McCoy RC, Petrov DA, Rabinowitz M. Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening. Fertil Steril. 2016;105:1307–13.

    CAS  PubMed  Google Scholar 

  26. Parinaud J, Mieusset R, Vieitez G, Labal B, Richoilley G. Influence of sperm parameters on embryo quality. Fertil Steril. 1993;60:888–92.

    CAS  PubMed  Google Scholar 

  27. Ménézo YJ, Sakkas D, Janny L. Co-culture of the early human embryo: factors affecting human blastocyst formation in vitro. Microsc Res Tech. 1995;32:50–6.

    PubMed  Google Scholar 

  28. Kumar M, Kumar K, Jain S, Hassan T, Dada R. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 2013; 68:05–14, 5.

    PubMed  PubMed Central  Google Scholar 

  29. Janny L, Menezo YJ. Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev. 1994;38:36–42.

    CAS  PubMed  Google Scholar 

  30. Shoukir Y, Chardonnens D, Campana A, Sakkas D. Blastocyst development from supernumerary embryos after intracytoplasmic sperm injection: a paternal influence? Hum Reprod. 1998;13:1632–7.

    CAS  PubMed  Google Scholar 

  31. Krawetz SA. Paternal contribution: new insights and future challenges. Nat Rev Genet. 2005;6:633–42.

    CAS  PubMed  Google Scholar 

  32. Gòdia M, Swanson G, Krawetz SA. A history of why fathers’ RNA matters. Biol Reprod. 2018; https://doi.org/10.1093/biolre/ioy007.

    PubMed  Google Scholar 

  33. Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16:30–6.

    CAS  PubMed  Google Scholar 

  34. Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139:287–301.

    CAS  PubMed  Google Scholar 

  35. Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.

    CAS  PubMed  Google Scholar 

  36. Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 1993;53:1945–51.

    CAS  PubMed  Google Scholar 

  37. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.

    CAS  PubMed  Google Scholar 

  38. Golan R, Shochat L, Weissenberg R, Soffer Y, Marcus Z, Oschry Y, et al. Evaluation of chromatin condensation in human spermatozoa: a flow cytometric assay using acridine orange staining. Mol Hum Reprod. 1997;3:47–54.

    CAS  PubMed  Google Scholar 

  39. Sakkas D, Urner F, Bianchi PG, Bizzaro D, Wagner I, Jaquenoud N, et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod. 1996;11:837–43.

    CAS  PubMed  Google Scholar 

  40. Bianchi PG, Manicardi GC, Urner F, Campana A, Sakkas D. Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. MHR: Basic science of reproductive medicine 1996; 2:139–44.

    CAS  PubMed  Google Scholar 

  41. Auger J, Mesbah M, Huber C, Dadoune JP. Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl. 1990;13:452–62.

    CAS  PubMed  Google Scholar 

  42. Bounartzi T, Dafopoulos K, Anifandis G, Messini CI, Koutsonikou C, Kouris S, et al. Pregnancy prediction by free sperm DNA and sperm DNA fragmentation in semen specimens of IVF/ICSI-ET patients. Hum Fert. 2016;19:56–62.

    CAS  Google Scholar 

  43. de Lamirande E, San Gabriel MC, Zini A. Human sperm chromatin undergoes physiological remodelling during in vitro capacitation and acrosome reaction. J Androl. 2012;33:1025–35.

    PubMed  Google Scholar 

  44. Asmarinah SA, Umar LA, Lestari SW, Mansyur E, Hestiantoro A, Paradowszka-Dogan A. Sperm chromatin maturity and integrity correlated to zygote development in ICSI program. Sys Biol Reprod Med. 2016;62:309–16.

    CAS  Google Scholar 

  45. Zalensky A, Zalenskaya I. Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans. 2007; 35:609–611.

  46. Gill K, Rosiak A, Gaczarzewicz D, Jakubik J, Kurzawa R, Kazienko A, et al. The effect of human sperm chromatin maturity on ICSI outcomes. Hum Cell. 2018;29:1–2.

    Google Scholar 

  47. Filatov MV, Semenova EV, Vorob'eva OA, Leont'eva OA, Drobchenko EA. Relationship between abnormal sperm chromatin packing and IVF results. Mol Human Reprod. 1999;5:825–30.

    CAS  PubMed  Google Scholar 

  48. Bronet F, Martínez E, Gaytán M, Liñán A, Cernuda D, Ariza M, et al. Sperm DNA fragmentation index does not correlate with the sperm or embryo aneuploidy rate in recurrent miscarriage or implantation failure patients. Hum Reprod. 2012;27:1922–9.

    CAS  PubMed  Google Scholar 

  49. Zhang Z, Zhu L, Jiang H, Chen H, Chen Y, Dai Y. Sperm DNA fragmentation index and pregnancy outcome after IVF or ICSI: a meta-analysis. J Assist Reprod Genet. 2015;32:17–26.

    PubMed  Google Scholar 

  50. Sadeghi MR, Lakpour N, Heidari-Vala H, Hodjat M, Amirjannati N, Hossaini Jadda H, et al. Relationship between sperm chromatin status and ICSI outcome in men with obstructive azoospermia and unexplained infertile normozoospermia. Romanian J Morphol Embryol. 2011;52:645–51.

    CAS  Google Scholar 

  51. Balhorn R. Sperm chromatin: an overview. In A Clinician's guide to sperm DNA and chromatin damage 2018 [pp. 3–30]. Springer, Cham.

    Google Scholar 

  52. Ward WS. Organization of sperm DNA by the nuclear matrix. Am J Clin Exp Urol. 2018;6:87.

    PubMed  PubMed Central  Google Scholar 

  53. Aoki VW, Liu LH, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20:1298–306.

    CAS  PubMed  Google Scholar 

  54. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22:604–10.

    CAS  PubMed  Google Scholar 

  55. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. MHR: Basic science of reproductive medicine 2009; 16:37–47.

    PubMed  Google Scholar 

  57. Depa-Martynow M, Kempisty B, Jagodziński PP, Pawelczyk L, Jedrzejczak P. Impact of protamine transcripts and their proteins on the quality and fertilization ability of sperm and the development of preimplantation embryos. Reprod Biol. 2012;12:57–72.

    PubMed  Google Scholar 

  58. Nanassy L, Liu L, Griffin J, T Carrell D. The clinical utility of the protamine 1/protamine 2 ratio in sperm. Protein Pept Lett. 2011;18:772–7.

    CAS  PubMed  Google Scholar 

  59. Nasr-Esfahani MH, Salehi MO, Razavi S, Mardani M, Bahramian H, Steger K, et al. Effect of protamine-2 deficiency on ICSI outcome. Reprod BioMed Online. 2004;9:652–8.

    CAS  PubMed  Google Scholar 

  60. Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69:211–7.

    CAS  PubMed  Google Scholar 

  61. Mateo S, Gázquez C, Guimerà M, Balasch J, Meistrich ML, Ballescà JL, et al. Protamine 2 precursors [pre-P2], protamine 1 to protamine 2 ratio [P1/P2], and assisted reproduction outcome. Fertil Steril. 2009;91:715–22.

    PubMed  Google Scholar 

  62. Sakkas D, Shoukir Y, Chardonnens D, Bianchi PG, Campana A. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum Reprod. 1998;13:182–7.

    CAS  PubMed  Google Scholar 

  63. Wykes SM, Krawetz SA. The structural organization of sperm chromatin. J Biol Chem. 2003;278:29471–7.

    CAS  PubMed  Google Scholar 

  64. D’Occhio MJ, Hengstberger KJ, Johnston SD. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Anim Reprod Sci. 2007;101:1–7.

    PubMed  Google Scholar 

  65. Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod BioMed Online. 2011;23:724–34.

    CAS  PubMed  Google Scholar 

  66. Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4:789–99.

    CAS  PubMed  Google Scholar 

  67. Fournier C, Labrune E, Lornage J, Soignon G, Giscard d'Estaing S, Guérin JF, et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome. Andrology. 2018;6:436–45.

    CAS  PubMed  Google Scholar 

  68. Tsuribe PM, Lima JN, Golim AM, Dell'Aqua PC, Issa JP, Gobbo CA. Assessment of sperm DNA in patients submitted the assisted reproduction technology procedures. JBRA Assist Reprod. 2016;20:17–22.

    PubMed  Google Scholar 

  69. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94:1728–33.

    CAS  PubMed  Google Scholar 

  70. Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, et al. DNA methylation dynamics of the human preimplantation embryo. Nature. 2014;511:611–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schagdarsurengin U, Steger K. Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol. 2016;13:584.

    CAS  PubMed  Google Scholar 

  72. Rodman TC, Pruslin FH, Hoffmann HP, Allfrey VG. Turnover of basic chromosomal proteins in fertilized eggs: a cytoimmunochemical study of events in vivo. J Cell Biol. 1981;90:351–61.

    CAS  PubMed  Google Scholar 

  73. Okada Y, Yamaguchi K. Epigenetic modifications and reprogramming in paternal pronucleus: sperm, preimplantation embryo, and beyond. Cell Mol Life Sci. 2017;74:1957–67.

    CAS  PubMed  Google Scholar 

  74. Vavouri T, Lehner B. Chromatin organization in sperm may be the major functional consequence of base composition variation in the human genome. PLoS Genet. 2011;7:e1002036.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gannon JR, Emery BR, Jenkins TG, Carrell DT. The sperm epigenome: implications for the embryo. Adv Exp Med Biol. 2014;791:53–66.

    PubMed  Google Scholar 

  76. Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015;350:aab2006.

    PubMed  Google Scholar 

  77. Arpanahi A, Brinkworth M, Iles D, Krawetz SA, Paradowska A, Platts AE, et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19:1338–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26:2558–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, et al. Uniformity of nucleosome preservation pattern in mammalian sperm and its connection to repetitive DNA elements. Dev Cell. 2014;30:23–35.

    CAS  PubMed  Google Scholar 

  80. Benchaib M, Braun V, Ressnikof D, Lornage J, Durand P, Niveleau A, et al. Influence of global sperm DNA methylation on IVF results. Hum Reprod. 2005;20:768–73.

    CAS  PubMed  Google Scholar 

  81. Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril. 2015;104:1388–97.

    CAS  PubMed  Google Scholar 

  82. Lelancette C, Miller D, Li Y, Krawetz SA. Paternal contributions: new functional insights for spermatozoal RNA. J Cell Biochem. 2008;104:1570–9.

    Google Scholar 

  83. Yan W, Morozumi K, Zhang J, Ro S, Park C, Yanagimachi R. Birth of mice after intracytoplasmic injection of single purified sperm nuclei and detection of messenger RNAs and microRNAs in the sperm nuclei. Biol Reprod. 2008;78:896–902.

    CAS  PubMed  Google Scholar 

  84. Frost RJ, Hamra FK, Richardson JA, Qi X, Bassel-Duby R, Olson EN. MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc Natl Acad Sci U S A. 2010;107:11847–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Miller D. Ensuring continuity of the paternal genome: potential roles for spermatozoal RNA in mammalian embryogenesis. Soc Reprod Fertil. 2007;65:373–89.

    CAS  Google Scholar 

  86. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109:490–4.

    CAS  PubMed  Google Scholar 

  87. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400.

    CAS  PubMed  Google Scholar 

  88. Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210:1131–3.

    CAS  PubMed  Google Scholar 

  89. Oleszczuk K, Augustinsson L, Bayat N, Giwercman A, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology. 2013;1:357–60.

    CAS  PubMed  Google Scholar 

  90. Zini A, Libman J. Sperm DNA damage: importance in the era of assisted reproduction. Curr Opin Urol. 2006;16:428–34.

    PubMed  Google Scholar 

  91. Varghese AC, du Plessis SS, Agarwal A. Male gamete survival at stake: causes and solutions. Reprod BioMed Online. 2008;17:866–80.

    CAS  PubMed  Google Scholar 

  92. Tempest HG. Meiotic recombination errors, the origin of sperm aneuploidy and clinical recommendations. Syst Biol Reprod Med. 2011;57:93–101.

    PubMed  Google Scholar 

  93. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30:219–29.

    CAS  PubMed  Google Scholar 

  94. Aitken J, Buckingham D, Krausz C. Relationships between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol Reprod Dev. 1994;39:268–79.

    CAS  PubMed  Google Scholar 

  95. Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility:biological and clinical aspects. Asian J Androl. 2006;8:11–29.

    CAS  PubMed  Google Scholar 

  96. Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remohí J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.

    PubMed  Google Scholar 

  97. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57:78–85.

    PubMed  Google Scholar 

  98. Ruvolo G, Fattouh RR, Bosco L, Brucculeri AM, Cittadini E. New molecular markers for the evaluation of gamete quality. J Assist Reprod Genet. 2013;30:207–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.

    PubMed  Google Scholar 

  100. Fatehi AN, Bevers MM, Schoevers E, Roelen BA, Colenbrander B. Gadella BM. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27:176–88.

    CAS  PubMed  Google Scholar 

  101. Knez J, Kovačič B, Vlaisavljević V. Comparison of embryo transfer strategies and assisted reproduction outcome in Slovenian and cross-border patients. Reprod BioMed Online. 2013;27:310–5.

    PubMed  Google Scholar 

  102. Van Montfoort AP, Dumoulin JC, Kester AD, Evers JL. Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum Reprod. 2004;19:2103–8.

    PubMed  Google Scholar 

  103. Zheng WW, Song G, Wang QL, Liu SW, Zhu XL, Deng SM, et al. Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J Androl. 2018;20:75.

    PubMed  Google Scholar 

  104. Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, et al. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29:2402–12.

    CAS  PubMed  Google Scholar 

  105. Tandara M, Bajić A, Tandara L, Bilić-Zulle L, Šunj M, Kozina V, et al. Sperm DNA integrity testing: big halo is a good predictor of embryo quality and pregnancy after conventional IVF. Andrology. 2014;2:678–86.

    CAS  PubMed  Google Scholar 

  106. Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod BioMed Online. 2015;30:120–7.

    CAS  PubMed  Google Scholar 

  107. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.

    PubMed  Google Scholar 

  108. Lin MH, Lee RK, Li SH, Lu CH, Sun FJ, Hwu YM. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2008;90:352–9.

    PubMed  Google Scholar 

  109. Breznik BP, Kovačič B, Vlaisavljević V. Are sperm DNA fragmentation, hyperactivation, and hyaluronan-binding ability predictive for fertilization and embryo development in in vitro fertilization and intracytoplasmic sperm injection? Fertil Steril. 2013;99:1233–41.

    Google Scholar 

  110. Jiang H, He RB, Wang CL, Zhu J. The relationship of sperm DNA fragmentation index with the outcomes of in-vitro fertilisation-embryo transfer and intracytoplasmic sperm injection. J Obstet Gynaecol. 2011;31:636–9.

    CAS  PubMed  Google Scholar 

  111. Rougier N, Uriondo H, Papier S, Checa MA, Sueldo C, Sedó CA. Changes in DNA fragmentation during sperm preparation for intracytoplasmic sperm injection over time. Fertil Steril. 2013;100:69–74.

    CAS  PubMed  Google Scholar 

  112. Selvam MK, Agarwal A. A systemic review on sperm DNA fragmentation in male factor infertility: laboratory assessment. Arab J Urol. 2018 Jan;17

  113. Morel F, Roux C, Bresson JL. Disomy frequency estimated by multicolour fluorescence in situ hybridization, degree of nuclear maturity and teratozoospermia in human spermatozoa. Reproduction. 2001;121:783–9.

    CAS  PubMed  Google Scholar 

  114. Ova’ri L, Sati L, Stronk J, Borsos A, Ward D, Cand Huszar G. Double probing individual human spermatozoa: aniline blue staining for persistent histones and fluorescence in situ hybridization for aneuploidies. Fertil Steril. 2010;93:2255–61.

    Google Scholar 

  115. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101:656–63.

    PubMed  Google Scholar 

  116. Fragouli E, Alfarawati S, Spath K, Wells D. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol Hum Reprod. 2013;20:117–26.

    PubMed  Google Scholar 

  117. Kirkpatrick G, Ferguson KA, Gao H, Tang S, Chow V, Yuen BH, et al. A comparison of sperm aneuploidy rates between infertile men with normal and abnormal karyotypes. Hum Reprod. 2008;23:1679–83.

    PubMed  Google Scholar 

  118. Mehdi M, Smatti B, Saad A, Guerin JF, Benchaib M. Analysis by fluorescence in situ hybridization [FISH] of the relationship between gonosomic aneuploidy and the results of assisted reproduction in men with severe oligozoospermia. Andrologia. 2006;38:137–41.

    CAS  PubMed  Google Scholar 

  119. Calogero AE, De Palma A, Grazioso C, Barone N, Romeo R, Rappazzo G, et al. Aneuploidy rate in spermatozoa of selected men with abnormal semen parameters. Hum Reprod. 2001;16:1172–9.

    CAS  PubMed  Google Scholar 

  120. Vozdova M, Heracek J, Sobotka V, Rubes J. Testicular sperm aneuploidy in non-obstructive azoospermic patients. Hum Reprod. 2012;27:2233–9.

    CAS  PubMed  Google Scholar 

  121. O'Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril. 2010;93:1–2.

    Google Scholar 

  122. Chatziparasidou A, Christoforidis N, Samolada G, Nijs M. Sperm aneuploidy in infertile male patients: a systematic review of the literature. Andrologia. 2015;47(1):847–60.

    CAS  PubMed  Google Scholar 

  123. Sarrate Z, Blanco J, Anton E, Egozcue S, Egozcue J, Vidal F. FISH studies of chromosome abnormalities in germ cells and its relevance in reproductive counseling. Asian J Androl. 2005;7:227–36.

    CAS  PubMed  Google Scholar 

  124. Baarends WM, van der Laan R, Grootegoed JA. DNA repair mechanisms and gametogenesis. Reproduction. 2001;121:31–9.

    CAS  PubMed  Google Scholar 

  125. Miyamoto T, Hasuike S, Yogev L, Maduro M, Ishikawa M, Westphal H, et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 2003;362:1714–9.

    CAS  PubMed  Google Scholar 

  126. Perdrix A, Saidi R, Menard JF, Gruel E, Milazzo JP, Mace B, et al. Relationship between conventional sperm parameters and motile sperm organelle morphology examination [MSOME]. Int J Androl. Int J Androl. 2012;35:491–8.

    CAS  PubMed  Google Scholar 

  127. Fragouli E. Next generation sequencing for preimplantation genetic testing for aneuploidy: friend or foe? Fertil Steril. 2018;109:606–7.

    PubMed  Google Scholar 

  128. Nicopoullos JD, Gilling-Smith C, Almeida PA, Homa S, Nice L, Tempest H, et al. The role of sperm aneuploidy as a predictor of the success of intracytoplasmic sperm injection? Hum Reprod. 2007;23:240–50.

    PubMed  Google Scholar 

  129. Rubio C, Gil-Salom M, Simon C, Vidal F, Rodrigo L, Minguez Y, et al. Incidence of sperm chromosomal abnormalities in a risk population: relationship with sperm quality and ICSI outcome. Hum Reprod. 2001;16:2084–92.

    CAS  PubMed  Google Scholar 

  130. Devroey P. Van Steirteghem a. A review of ten years’ experience of ICSI. Hum Reprod Update. 2004;10:19–28.

    CAS  PubMed  Google Scholar 

  131. Ramasamy R, Scovell JM, Kovac JR, Cook PJ, Lamb DJ, Lipshultz LI. Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertil Steril. 2015;103:906–9.

    PubMed  PubMed Central  Google Scholar 

  132. Esquerré-Lamare C, Walschaerts M, Debordeaux LC, Moreau J, Bretelle F, Isus F, et al. Sperm aneuploidy and DNA fragmentation in unexplained recurrent pregnancy loss: a multicenter case-control study. Basic Clin Androl. 2018;28:4.

    PubMed  PubMed Central  Google Scholar 

  133. Hassold T, Hunt P. To err [meiotically] is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2:280–91.

    CAS  PubMed  Google Scholar 

  134. McCoy RC, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science. 2015;348:235–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. García-Ferreyra J, Luna D, Villegas L, Romero R, Zavala P, Hilario R, Dueñas-Chacón J. High aneuploidy rates observed in embryos derived from donated oocytes are related to male aging and high percentages of sperm DNA fragmentation. Clin Med Insights Reprod Health 2015;9: CMRH-S32769.

  136. García-Ferreyra J, Hilario R, Dueñas J. High percentages of embryos with 21, 18 or 13 trisomy are related to advanced paternal age in donor egg cycles. JBRA Assist Reprod. 2018;22:26.

    PubMed  PubMed Central  Google Scholar 

  137. El-Domyati MM, Al-Din AB, Barakat MT, El-Fakahany HM, Xu J, Sakkas D. Deoxyribonucleic acid repair and apoptosis in testicular germ cells of aging fertile men: the role of the poly [adenosine diphosphate-ribosyl] ation pathway. Fertil Steril. 2009;1(91):2221–9.

    Google Scholar 

  138. Escudero T, Abdelhadi I, Sandalinas M, Munne S. Predictive value of sperm fluorescence in situ hybridization analysis on the outcome of preimplantation genetic diagnosis for translocations. Fertil Steril. 2003;79:1528–34.

    PubMed  Google Scholar 

  139. Daughtry BL, Rosenkrantz JL, Lazar NH, Fei SS, Redmayne N, Torkenczy KA, Adey A, Gao L, Park B, Nevonen KA, Carbone L. Chromosome Removal Via Cellular Fragmentation and Aneuploid Blastomere Exclusion in Primate Embryos. bioRxiv. 2018 :241851.

  140. Manuelidis L. A view of interphase chromosomes. Science. 1990;250:1533–40.

    CAS  PubMed  Google Scholar 

  141. Sandalinas M, Sadowy S, Alikani M, Calderon G, Cohen J, Munné S. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod. 2001;16:1954–8.

    CAS  PubMed  Google Scholar 

  142. Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Gallardo EF, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zheng X, Liu P, Chen G, Qiao J, Wu Y, Fan M. Viability of frozen-thawed human embryos with one–two blastomeres lysis. J Assist Reprod Genet. 2008;25:281–5.

    PubMed  PubMed Central  Google Scholar 

  144. Quintana-Murci L, Krausz C, McElreavey K. The human Y chromosome: function, evolution and disease. Forensic Sci Int. 2001;118:169–81.

    CAS  PubMed  Google Scholar 

  145. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825.

    CAS  PubMed  Google Scholar 

  146. Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endo. 2018;16:14.

    Google Scholar 

  147. Longepied G, Saut N, Aknin-Seifer I, Levy R, Frances AM, Metzler-Guillemain C, et al. Complete deletion of the AZFb interval from the Y chromosome in an oligozoospermic man. Hum Reprod. 2010;25:2655–63.

    CAS  PubMed  Google Scholar 

  148. Navarro-Costa P, Pereira L, Alves C, Gusmão L, Proença C, Marques-Vidal P, et al. Characterizing partial AZFc deletions of the Y chromosome with amplicon-specific sequence markers. BMC Genomics. 2007;8:342.

    PubMed  PubMed Central  Google Scholar 

  149. Page DC, Silber S, Brown LG. Men with infertility caused by AZFc deletion can produce sons by intracytoplasmic sperm injection, but are likely to transmit the deletion and infertility. Hum Reprod. 1999;14:1722–6.

    CAS  PubMed  Google Scholar 

  150. Choi YM, Yoon JS, Hwang KR, Kim SH, Lee WD, Moon SY. Follicle-stimulating hormone receptor polymorphism and ovarian responses to controlled ovarian hyperstimulation for IVF-ET. Fertil Steril. 2004;82:S206–7.

    Google Scholar 

  151. Mulhall JP, Reijo R, Alagappan R, Brown L, Page D, Carson R, et al. Azoospermic men with deletion of the DAZ gene cluster are capable of completing spermatogenesis: fertilization, normal embryonic development and pregnancy occur when retrieved testicular spermatozoa are used for intracytoplasmic sperm injection. Hum Reprod. 1997;12:503–8.

    CAS  PubMed  Google Scholar 

  152. van Golde RJ, Wetzels AM, de Graaf R, Tuerlings JH, Braat DD, Kremer JA. Decreased fertilization rate and embryo quality after ICSI in oligozoospermic men with microdeletions in the azoospermia factor c region of the Y chromosome. Hum Reprod. 2001;16:289–92.

    PubMed  Google Scholar 

  153. Liu XH, Qiao J, Li R, Yan LY, Chen LX. Y chromosome AZFc microdeletion may not affect the outcomes of ICSI for infertile males with fresh ejaculated sperm. J Assist Reprod Genet. 2013;30:813–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Mateu E, Rodrigo L, Martínez MC, Peinado V, Milán M, Gil-Salom M, et al. Aneuploidies in embryos and spermatozoa from patients with Y chromosome microdeletions. Fertil Steril. 2010;94:2874–7.

    PubMed  Google Scholar 

  155. Sen S, Ambulkar P, Hinduja I, Zaveri K, Gokral J, Pal A, et al. Susceptibility of gr/gr rearrangements to azoospermia or oligozoospermia is dependent on DAZ and CDY1 gene copy deletions. J Assist Reprod Genet. 2015;32:1333–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Beyaz CC, Gunes S, Onem K, Kulac T, Asci R. Partial deletions of Y-chromosome in infertile men with non-obstructive azoospermia and Oligoasthenoteratozoospermia in a Turkish population. in vivo. 2017;31:365–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Fernández-Gonzalez R, Moreira P, Bilbao A, Jiménez A, Pérez-Crespo M, Ramírez MA, et al. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci U S A. 2004;101:5880–5.

    PubMed  PubMed Central  Google Scholar 

  158. Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk J. J. Assisted reproductive technologies and the risk of birth defects—a systematic review. Hum Reprod. 2005;20:328–38.

    PubMed  Google Scholar 

  159. Beck-Fruchter R, Shalev E, Weiss A. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis. Reprod BioMed Online. 2016;32:286–98.

    CAS  PubMed  Google Scholar 

  160. Heytens E, Parrington J, Coward K, Young C, Lambrecht ST, Yoon SY, et al. Reduced amounts and abnormal forms of phospholipase C zeta [PLCζ] in spermatozoa from infertile men. Hum Reprod. 2009;24:2417–28.

    CAS  PubMed  Google Scholar 

  161. Kashir J, Konstantinidis M, Jones C, Lemmon B, Chang Lee H, Hamer R, et al. A maternally inherited autosomal point mutation in human phospholipase C zeta [PLCζ] leads to male infertility. Hum Reprod. 2011;27:222–31.

    PubMed  PubMed Central  Google Scholar 

  162. Schatten H, Sun QY. The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. Environ Mol Mutagen. 2009;50:620–36.

    CAS  PubMed  Google Scholar 

  163. Cappallo-Obermann H, Schulze W, Jastrow H, Baukloh V, Spiess AN. Highly purified spermatozoal RNA obtained by a novel method indicates an unusual 28S/18S rRNA ratio and suggests impaired ribosome assembly. Mol Hum Reprod. 2011;17:669–78.

    CAS  PubMed  Google Scholar 

  164. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs. Reproductive Medicine Network Hum Reprod Update. 2013;19:604–24.

    CAS  PubMed  Google Scholar 

  165. Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143:635–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Balmori C, Varela E. Should we consider telomere length and telomerase activity in male factor infertility? Curr Opin Obstet Gynecol. 2018;30:197–202.

    PubMed  Google Scholar 

  167. Sedó CA, Bilinski M, Lorenzi D, Uriondo H, Noblia F, Longobucco V, et al. Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assisted Reproduction. 2017;21(4):343–50.

    PubMed Central  Google Scholar 

  168. Haghpanah T, Salehi M, Ghaffari Novin M, Masteri Farahani R, Fadaei-Fathabadi F, Dehghani-Mohammadabadi M, et al. Does sperm DNA fragmentation affect the developmental potential and the incidence of apoptosis following blastomere biopsy? Syst Biol Reprod Med. 2016;62:1–10.

    CAS  PubMed  Google Scholar 

  169. Duarte C, Núñez V, Wong Y, Vivar C, Benites E, Rodriguez U, et al. Impact of the Z potential technique on reducing the sperm DNA fragmentation index, fertilization rate and embryo development. JBRA assisted reproduction. 2017;21:351.

    PubMed  PubMed Central  Google Scholar 

  170. Xue LT, Wang RX, He B, Mo WY, Huang L, Wang SK, et al. Effect of sperm DNA fragmentation on clinical outcomes for Chinese couples undergoing in vitro fertilization or intracytoplasmic sperm injection. J Int Med Res. 2016;44:1283–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Gat I, Tang K, Quach K, Kuznyetsov V, Antes R, Filice M, et al. Sperm DNA fragmentation index does not correlate with blastocyst aneuploidy or morphological grading. PLoS One. 2017;12:e0179002.

    PubMed  PubMed Central  Google Scholar 

  172. Niu ZH, Shi HJ, Zhang HQ, Zhang AJ, Sun YJ, Feng Y. Sperm chromatin structure assay results after swim-up are related only to embryo quality but not to fertilization and pregnancy rates following IVF. Asian J Androl. 2011;13:862.

    PubMed  PubMed Central  Google Scholar 

  173. Kihaile PE, Yasui A, Shuto Y. Prospective assessment of Y-chromosome microdeletions and reproductive outcomes among infertile couples of Japanese and African origin. J Exp Clin Assist Reprod. 2005;2:9.

    PubMed  PubMed Central  Google Scholar 

  174. Peterlin B, Kunej T, Sinkovec J, Gligorievska N, Zorn B. Screening for Y chromosome microdeletions in 226 Slovenian subfertile men. Hum Reprod. 2002;17:17–24.

    CAS  PubMed  Google Scholar 

  175. Tanaka A, Nagayoshi M, Tanaka I, Ikuma S, Miki T, Yamaguchi T, et al. Clinical outcome of treatments for azoospermia. Fertil Steril. 2015;104:e237–8.

    Google Scholar 

  176. Sasamine K, Mizuta S, Nishiyama R, Yamaguchi K, Kitaya K, Matsubayashi H, et al. Fertilization and embryonic development of azoospermia with AZFc microdeletion. Fertil Steril. 2015;104:e238.

    Google Scholar 

  177. Choi DK, Gong IH, Hwang JH, Oh JJ, Hong JY. Detection of Y chromosome microdeletion is valuable in the treatment of patients with nonobstructive azoospermia and oligoasthenoteratozoospermia: sperm retrieval rate and birth rate. Korean J Urol. 2013;54:111–6.

    PubMed  PubMed Central  Google Scholar 

  178. Zhu Y, Wu T, Li G, Yin B, Liu H, Wan C, et al. The sperm quality and clinical outcomes were not affected by sY152 deletion in Y chromosome for oligozoospermia or azoospermia men after ICSI treatment. Gene. 2015;573:233–8.

    CAS  PubMed  Google Scholar 

  179. Liu XY, Wang RX, Fu Y, Luo LL, Guo W, Liu RZ. Outcomes of intracytoplasmic sperm injection in oligozoospermic men with Y chromosome AZF b or AZF c microdeletions. Andrologia. 2017;49:e12602.

    Google Scholar 

Download references

Authors’ information

DS is Scientific Director at Boston IVF, Waltham MA 02451, USA.

SC is a post-doctoral fellow, Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, India.

Author information

Authors and Affiliations

Authors

Contributions

DS contributed towards the design and structure of the manuscript. SC collected data and wrote the manuscript. Both authors approve the final manuscript.

Corresponding authors

Correspondence to Stacy Colaco or Denny Sakkas.

Ethics declarations

Ethics approval and consent to participate

Not applicable as it is a review article.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colaco, S., Sakkas, D. Paternal factors contributing to embryo quality. J Assist Reprod Genet 35, 1953–1968 (2018). https://doi.org/10.1007/s10815-018-1304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1304-4

Keywords

Navigation