Skip to main content

Advertisement

Log in

Safe Autonomy Under Perception Uncertainty Using Chance-Constrained Temporal Logic

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Autonomous vehicles have found wide-ranging adoption in aerospace, terrestrial as well as marine use. These systems often operate in uncertain environments and in the presence of noisy sensors, and use machine learning and statistical sensor fusion algorithms to form an internal model of the world that is inherently probabilistic. Autonomous vehicles need to operate using this uncertain world-model, and hence, their correctness cannot be deterministically specified. Even once probabilistic correctness is specified, proving that an autonomous vehicle will operate correctly is a challenging problem. In this paper, we address these challenges by proposing a correct-by-synthesis approach to autonomous vehicle control. We propose a probabilistic extension of temporal logic, named Chance Constrained Temporal Logic (C2TL), that can be used to specify correctness requirements in presence of uncertainty. C2TL extends temporal logic by including chance constraints as predicates in the formula which allows modeling of perception uncertainty while retaining its ease of reasoning. We present a novel automated synthesis technique that compiles C2TL specification into mixed integer constraints, and uses second-order (quadratic) cone programming to synthesize optimal control of autonomous vehicles subject to the C2TL specification. We also present a risk distribution approach that enables synthesis of plans with lower cost without increasing the overall risk. We demonstrate the effectiveness of the proposed approach on a diverse set of illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Given a disjunctive constraint of the form \(\mathbf a_1 x + b_1 \le 0 \vee \mathbf a_2 x + b_2 \le 0\), the big-M reduction translates it to \(\mathbf a_1 x + b_1 -M z_1 \le 0 \wedge \mathbf a_2 x + b_2 -M z_2\le 0 \wedge z_1 + z_2 < 2\) where \(z_{1}, z_2 \in \{0,1\}\) and M is chosen to be larger than any possible value of \(\mathbf a_1 x + b_1 \) and \(\mathbf a_2 x + b_2\).

References

  1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11), 2724–2734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akametalu, A.K., Fisac, J.F., Gillula, J.H., Kaynama, S., Zeilinger, M.N., Tomlin, C.J.: Reachability-based safe learning with gaussian processes. In: 53rd IEEE Conference on Decision and Control, pp. 1424–1431. IEEE (2014)

  3. Andersen, M.S., Dahl, J., Vandenberghe, L.: Cvxopt: A python package for convex optimization, version 1.1. 6. Available at cvxopt. org, (2013)

  4. Åström, K.J.: Introduction to Stochastic Control Theory. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  5. Bailey, T., Durrant-Whyte, Hugh: Simultaneous localization and mapping (slam): Part ii. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  6. Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berkenkamp, F., Schoellig, A.P.: Safe and robust learning control with gaussian processes. In: Control Conference (ECC), 2015 European, pp. 2496–2501. IEEE, (2015)

  8. Bernini, N., Bertozzi, M., Castangia, L., Patander, M., Sabbatelli, M.: Real-time obstacle detection using stereo vision for autonomous ground vehicles: A survey. In: ITSC, pp. 873–878. IEEE, (2014)

  9. Broggi, A., et al.: Autonomous vehicles control in the VisLab intercontinental autonomous challenge. Ann. Rev. Control 36(1), 161–171 (2012)

    Article  Google Scholar 

  10. Cassandras, Christos G., Lygeros, John: Stochastic Hybrid Systems, vol. 24. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  11. Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4(3), 235–263 (1958)

    Article  Google Scholar 

  12. De Nijs, R., Ramos, S., Roig, G., Boix, X., Gool, L.V., Kuhnlenz, K: On-line semantic perception using uncertainty. In: IROS, pp. 4185–4191. IEEE, (2012)

  13. Devroye, Luc, Györfi, László, Lugosi, Gábor: A Probabilistic Theory of Pattern Recognition, vol. 31. Springer, Berlin (2013)

    MATH  Google Scholar 

  14. Dietterich, T.G., Horvitz, Eric J.: Rise of concerns about AI: reflections and directions. Commun. ACM 58(10), 38–40 (2015)

    Article  Google Scholar 

  15. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: FORMATS, pp. 92–106, (2010)

  16. Fu, J., Topcu, U.: Computational methods for stochastic control with metric interval temporal logic specifications. In: CDC, pp. 7440–7447, (2015)

  17. Fu, J., Topcu, U.: Synthesis of joint control and active sensing strategies under temporal logic constraints. IEEE Trans. Autom. Control 61(11), 3464–3476 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goerzen, C., Kong, Zhaodan, Mettler, Bernard: A survey of motion planning algorithms from the perspective of autonomous uav guidance. J. Intell. Robot. Syst. 57(1–4), 65–100 (2010)

    Article  MATH  Google Scholar 

  19. Huth, Michael, Ryan, Mark: Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Jha, S., Raman, V.: Automated synthesis of safe autonomous vehicle control under perception uncertainty. In: NASA Formal Methods, pp. 117–132 (2016)

  21. Koutsoukos, X., Riley, D.: Computational methods for reachability analysis of stochastic hybrid systems. In: HSCC, pp. 377–391. Springer, Berlin (2006)

  22. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic symbolic model checker. In: Computer Performance Evaluation: Modelling Techniques and Tools, pp. 200–204. Springer, Berlin (2002)

  23. Li, P., Arellano-Garcia, H., Wozny, Gnter: Chance constrained programming approach to process optimization under uncertainty. Comput. Chem. Eng. 32(1–2), 25–45 (2008)

    Article  Google Scholar 

  24. Mack, Chris, et al.: Fifty years of moore’s law. IEEE Trans. Semicond. Manuf. 24(2), 202–207 (2011)

    Article  Google Scholar 

  25. Martinet, P., Laugier, C., Nunes, U.: Special issue on perception and navigation for autonomous vehicles. IEEE Robot. Autom. Mag. 21(1), 26–27 (2014)

    Article  Google Scholar 

  26. Mathys, D.C., et al.: Uncertainty in perception and the hierarchical Gaussian filter. Front. Hum. Neurosci. 8, 825 (2014)

    Article  Google Scholar 

  27. McGee, T.G., Sengupta, R., Hedrick, K.: Obstacle detection for small autonomous aircraft using sky segmentation. In: ICRA 2005, pp. 4679–4684. IEEE (2005)

  28. Miller, Bruce L., Wagner, Harvey M.: Chance constrained programming with joint constraints. Oper. Res. 13(6), 930–945 (1965)

    Article  MATH  Google Scholar 

  29. Mitchell, I., Tomlin, C.J.: Level set methods for computation in hybrid systems. In: International Workshop on Hybrid Systems: Computation and Control, pp. 310–323. Springer, Berlin (2000)

  30. Mitchell, Ian M., Bayen, Alexandre M., Tomlin, Claire J.: A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom Control 50(7), 947–957 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Patchett, C., Jump, M., Fisher, M.: Safety and certification of unmanned air systems. Eng. Technol. Ref. 1, 1 (2015)

    Google Scholar 

  32. Pnueli, A.: The temporal logic of programs. In: Providence, pp. 46–57 (1977)

  33. Prajna, Stephen, Jadbabaie, Ali, Pappas, George J: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prandini, Maria, Jianghai, Hu: Stochastic reachability: theory and numerical approximation. Stoch. Hybrid Syst. Autom. Control Eng. Ser. 24, 107–138 (2006)

    MATH  Google Scholar 

  35. Prékopa, András: Stochastic Programming, vol. 324. Springer, Berlin (2013)

    MATH  Google Scholar 

  36. Pshikhopov, V.K., Medvedev, M.Y., Gaiduk, A.R., Gurenko, B.V.: Control system design for autonomous underwater vehicle. In: 2013 Latin American Robotics Symposium and Competition (2013)

  37. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Model predictive control with signal temporal logic specifications. In CDC, pp. 81–87 (2014)

  38. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis from signal temporal logic specifications. In: HSCC, pp. 239–248 (2015)

  39. Rouff, Christopher, Hinchey, Mike: Experience from the DARPA Urban Challenge. Springer, Berlin (2011)

    Google Scholar 

  40. Rushby, J.: New challenges in certification for aircraft software. In: EMSOFT, pp. 211–218. ACM (2011)

  41. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal temporal logic. In: Robotics: Science and Systems XII, (2016)

  42. Summers, S., Kamgarpour, M., Lygeros, J., Tomlin, C.: A stochastic reach-avoid problem with random obstacles. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, pp. 251–260. ACM (2011)

  43. Sun, W., van den Berg, J., Alterovitz, R.: Stochastic Extended LQR: Optimization-Based Motion Planning Under Uncertainty, pp. 609–626. Springer, Cham (2015)

  44. Svorenova, M., Kretínský, J., Chmelik, M., Chatterjee, K., Cerná, I., Belta, C.: Temporal Logic Control for Stochastic Linear Systems Using Abstraction Refinement of Probabilistic Games. In: HSCC, pp. 259–268 (2015)

  45. Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: American Control Conference, 2005. Proceedings of the 2005, vol. 1, pp. 300–306. IEEE (2005)

  46. Vitus, M.: Stochastic Control Via Chance Constrained Optimization and its Application to Unmanned Aerial Vehicles. PhD thesis, Stanford University, (2012)

  47. Vitus, M.P., Tomlin, C.J.: Closed-loop belief space planning for linear, Gaussian systems. In: ICRA, pp. 2152–2159. IEEE (2011)

  48. Vitus, M.P., Tomlin, C.J.: A hybrid method for chance constrained control in uncertain environments. In: CDC, pp. 2177–2182 (2012)

  49. Vitus, M.P., Tomlin, C.J.: A probabilistic approach to planning and control in autonomous urban driving. In: CDC, pp. 2459–2464 (2013)

  50. Xu, W., Pan, J., Wei, J., Dolan, J.M.: Motion planning under uncertainty for on-road autonomous driving. In: ICRA, pp. 2507–2512. IEEE (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmit Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S., Raman, V., Sadigh, D. et al. Safe Autonomy Under Perception Uncertainty Using Chance-Constrained Temporal Logic. J Autom Reasoning 60, 43–62 (2018). https://doi.org/10.1007/s10817-017-9413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-017-9413-9

Keywords

Navigation