Skip to main content
Log in

An overview of spatial microscopic and accelerated kinetic Monte Carlo methods

  • Published:
Journal of Computer-Aided Materials Design

Abstract

The microscopic spatial kinetic Monte Carlo (KMC) method has been employed extensively in materials modeling. In this review paper, we focus on different traditional and multiscale KMC algorithms, challenges associated with their implementation, and methods developed to overcome these challenges. In the first part of the paper, we compare the implementation and computational cost of the null-event and rejection-free microscopic KMC algorithms. A firmer and more general foundation of the null-event KMC algorithm is presented. Statistical equivalence between the null-event and rejection-free KMC algorithms is also demonstrated. Implementation and efficiency of various search and update algorithms, which are at the heart of all spatial KMC simulations, are outlined and compared via numerical examples. In the second half of the paper, we review various spatial and temporal multiscale KMC methods, namely, the coarse-grained Monte Carlo (CGMC), the stochastic singular perturbation approximation, and the τ-leap methods, introduced recently to overcome the disparity of length and time scales and the one-at-a time execution of events. The concepts of the CGMC and the τ-leap methods, stochastic closures, multigrid methods, error associated with coarse-graining, a posteriori error estimates for generating spatially adaptive coarse-grained lattices, and computational speed-up upon coarse-graining are illustrated through simple examples from crystal growth, defect dynamics, adsorption–desorption, surface diffusion, and phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys 21: 1087–1092

    CAS  Google Scholar 

  2. Allen M.P., Tildesley D.J. (1989). Computer Simulation of Liquids. Oxford Science Publications, Oxford

    Google Scholar 

  3. Frenkel D., Smit B. (1996). Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, New York

    Google Scholar 

  4. Auerbach S.M. (2000). Theory and simulation of jump dynamics, diffusion and phase equilibrium in nanopores. Int. Rev. Phys. Chem. 19: 155–198

    CAS  Google Scholar 

  5. Binder K. (1986). Monte Carlo Methods in Statistical Physics, vol. 7. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Binder K. (1992). Atomistic modeling of materials properties by Monte-Carlo simulation. Adv. Mater 4: 540–547

    CAS  Google Scholar 

  7. Landau D.P., Binder K. (2000). A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge

    Google Scholar 

  8. Ciccotti G., Frenkel D., McDonald I.R. (1987). Simulation of Liquids and Solids. Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics. North-Holland, Amsterdam

    Google Scholar 

  9. Dooling D.J., Broadbelt L.J. (2001). Generic Monte Carlo tool for kinetic modeling. Ind. Eng. Chem. Res 40: 522–529

    CAS  Google Scholar 

  10. Gilmer G.H., Huang H.C., de la Rubia T.D., Dalla Torre J., Baumann F. (2000). Lattice Monte Carlo models of thin film deposition. Thin Solid Films 365: 189–200

    CAS  Google Scholar 

  11. Nieminen R., Jansen A. (1997). Monte Carlo simulations of surface reactions. Appl. Catal. A: Gen 160: 99–123

    CAS  Google Scholar 

  12. Hill T.L. (1986). An Introduction to Statistical Thermodynamics. Dover, New York

    Google Scholar 

  13. Chakraborty A.K. (2001). Molecular Modeling and Theory in Chemical Engineering, vol. 28. Academic Press, New York

    Google Scholar 

  14. Broadbelt L., Snurr R. (2000). Applications of molecular modeling in heterogeneous catalysis research. Appl. Catal. A: Gen 200: 23–46

    CAS  Google Scholar 

  15. Sholl D.S., Tully J.C. (1998). A generalized surface hopping method. J. Chem. Phys 109: 7702–7710

    CAS  Google Scholar 

  16. Catlow C.R.A., Bell R.G., Gale J.D. (1994). Computer modeling as a technique in materials chemistry. J. Mat. Chem 4: 781–792

    CAS  Google Scholar 

  17. Evans J.W., Miesch M.S. (1991). Catalytic reaction kinetics near a first-order poisoning transition. Surf. Sci 245: 401–410

    CAS  Google Scholar 

  18. Hansen E.W., Neurock M. (2000). First-principles-based Monte Carlo simulation of ethylene hydrogenation kinetics on Pd. J. Catal 196: 241–252

    CAS  Google Scholar 

  19. Huang H.C., Gilmer G.H. (1999). Multi-lattice Monte Carlo model of thin films. J. Comput. Aided Mater. Des 6: 117–127

    CAS  Google Scholar 

  20. Jansen A.P.J. (1995). Monte Carlo simulations of chemical reactions on a surface with time-dependent reaction-rate constants. Comput. Phys. Commun 86: 1–12

    CAS  Google Scholar 

  21. Kang H.C., Weinberg W.H. (1988). Dynamic Monte Carlo with a proper energy barrier: Surface diffusion and two-dimensional domain ordering. J. Chem. Phys 90: 2824–2830

    Google Scholar 

  22. Kew J., Wilby M.R., Vvedensky D.D. (1993). Continuous-space Monte Carlo simulations of epitaxial-growth, Journal of Crystal Growth. J. Crystal Growth 127: 508–512

    Google Scholar 

  23. Khor K.E., Das Sarma S. (2002). Quantum dot self-assembly in growth of strained-layer thin films: A kinetic Monte Carlo study. Phys. Rev. B 62: 16657–16664

    Google Scholar 

  24. Macedonia M.D., Maginn E.J. (2000). Impact of confinement on zeolite cracking selectivity via Monte Carlo integration. AIChE J. 46: 2504–2517

    CAS  Google Scholar 

  25. Nikolakis V., Vlachos D.G., Tsapatsis M. (1999). Modeling of zeolite L crystallization using continuum time Monte Carlo simulations. J. Chem. Phys. 111: 2143–2150

    CAS  Google Scholar 

  26. Novere N.L., Shimizu T.S. (2001). STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17: 575–576

    Google Scholar 

  27. Schulze T.P. (2004). A hybrid scheme for simulating epitaxial growth. J. Crystal Growth 263: 605–615

    CAS  Google Scholar 

  28. Zhdanov V.P., Kasemo B. (1997). Kinetics of rapid reactions on nanometer catalyst particles. Phys. Rev. B, 55, 4105–4108

    CAS  Google Scholar 

  29. Gilmer G. (1980). Computer models of crystal growth. Science 208: 355–363

    CAS  Google Scholar 

  30. Muller-Krumbhaar H. (1978). Kinetics of crystal growth. In: Kaldis E. (eds) Current Topics in Materials Science. North-Holland, Amsterdam, pp. 1–46

    Google Scholar 

  31. Drews T.O., Ganley J.C., Alkire R.C. (2003). Evolution of surface roughness during copper electrodeposition in the presence of additives - Comparison of experiments and Monte Carlo simulations. J. Electrochem. Soc 150: C325–C334

    CAS  Google Scholar 

  32. Lou Y., Christofides P.D. (2004). Feedback control of surface roughness of GaAs (001) thin films using kinetic Monte Carlo models. Comput. Chem. Eng 29: 225–241

    CAS  Google Scholar 

  33. Gallivan M.A., Murray R.M. (2004). Reduction and identification methods for Markovian control systems, with application to thin film deposition. Int. J. Robust Nonlinear Control 14: 113–132

    Google Scholar 

  34. Wicke E., Kunmann P., Keil W., Schiefler J. (1980). Unstable and oscillatory behavior in heterogeneous catalysis. Berichte der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys 84: 315–323

    CAS  Google Scholar 

  35. Ziff R.M., Gulari E., Barshad Y. (1986). Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56: 2553–2556

    CAS  Google Scholar 

  36. Vlachos D.G. (2005). A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid-surface interacting systems. Adv. Chem. Eng 30: 1–61

    Google Scholar 

  37. Cuitino A.M., Stainier L., Wang G.F., Strachan A., Cagin T., Goddard W.A., Ortiz M. (2002). A multiscale approach for modeling crystalline solids. J. Comput. Aided Mater. Des 8: 127–149

    Google Scholar 

  38. Miller R.E., Tadmor E.B. (2002). The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des 9: 203–239

    CAS  Google Scholar 

  39. Maroudas D. (2003). Multiscale modeling. In: Challenges for the Chemical Sciences in the 21st Century: Information and Communications Report. National Academies, Washington, DC, pp. 133–136

    Google Scholar 

  40. Grujicic M., Lai S.G. (2001). Multi-length scale modeling of chemical vapor deposition of titanium nitride coatings. J. Mater. Sci 36: 2937–2953

    CAS  Google Scholar 

  41. Jaraiz M., Rubio E., Castrillo P., Pelaz L., Bailon L., Barbolla J., Gilmer G.H., Rafferty C.S. (2000). Kinetic Monte Carlo simulations: an accurate bridge between ab initio calculations and standard process experimental data. Mater. Sci. Semiconductor Process 3: 59–63

    CAS  Google Scholar 

  42. Kremer K., Muller-Plathe F. (2002). Multiscale simulation in polymer science. Mol. Simul 28: 729–750

    CAS  Google Scholar 

  43. Duke T.A.J., Le Novere N., Bray D. (2001). Conformational spread in a ring of proteins: A stochastic approach to allostery. J. Mol. Biol 308: 541–553

    CAS  Google Scholar 

  44. McAdams H.H., Arkin A. (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci 94: 814–819

    CAS  Google Scholar 

  45. McAdams H.H., Arkin A. (1999). It’s a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics 15: 65–69

    CAS  Google Scholar 

  46. Woolf P.J., Linderman J.J. (2003). Self organization of membrane proteins via dimerization. Biophys. Chem 104: 217–227

    CAS  Google Scholar 

  47. Mayawala K., Vlachos D.G., Edwards J.S. (2006). Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. Biophys. Chem 121: 194–208

    CAS  Google Scholar 

  48. National Research Council (NRC): Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering. National Research Council, The National Academy Press, BCST, www.nap.edu publication (2003)

  49. Partnership, C.I.V.T., Chemical Industry Vision2020 Technology Partnership, Chemical Industry R&D Roadmap for Nanomaterials by design. www.ChemicalVision2020.org (2003)

  50. Vlachos, D.G.: Molecular modeling for non-equilibrium chemical processes. In: Lee, S. (ed.) Encyclopedia of Chemical Processing, pp. 1717–1726. Taylor and Francis, New York.

  51. Voter, A.F.: Introduction to the Kinetic Monte Carlo Method. Radiation Effects in Solids. Springer, NATO Publishing unit, Dordrecht (2006) in press.

  52. Gardiner C.W. (1985). Handbook of Stochastic Methods, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  53. Ghez R. (1988). A Primer of Diffusion Problems. John Wiley & Sons, New York

    Google Scholar 

  54. Vlachos D.G., Schmidt L.D., Aris R. (1993). Kinetics of faceting of crystals in growth, etching, and equilibrium. Phys. Rev. B 47: 4896–4909

    CAS  Google Scholar 

  55. Magna A.L., Coffa S., Colomo L. (1999). Role of externded vacancy-vacancy interaction on the ripening of voids in silicon. Phys. Rev. Lett 82: 1720–1723

    Google Scholar 

  56. Domain C., Becquart C.S., Malerba L. (2004). Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J. Nucl. Mater 335: 121–145

    CAS  Google Scholar 

  57. Sadigh B., Lenosky T.J., Theiss S.K., Caturla M.J., de la Rubia T.D., Foad M.A. (1999). Mechanism of boron diffusion in silicon: An ab initio and kinetic Monte Carlo study. Phys. Rev. Lett. 83: 4341–4344

    CAS  Google Scholar 

  58. Noda T. (2003). Modeling of Indium diffusion and end-of-range defects in Silicon using a kinetic Monte Carlo simulation. J. Appl. Phys 94: 6396–6400

    CAS  Google Scholar 

  59. Gordon S.M.J., Kenny S.D., Smith R. (2005). Diffusion dynamics of defects in Fe and Fe-P systems. Phys. Rev. B 72: 214104

    Google Scholar 

  60. Soneda N., Rubia T.D. (1998). Defect production, annealing kinetics and damage evolution in a-Fe: an atomic-scale compuer simulation. Philos. Mag. A 78: 995–1019

    CAS  Google Scholar 

  61. Dai J., Kanter J.M., Kapur S.S., Seider W.D., Sinno T. (2005). On-lattice kinetic Monte Carlo simulations of point defect aggregation in entropically influenced crystalline systems. Phys. Rev. B 72: 134102

    Google Scholar 

  62. Fahey P.M., Griffin B.P., Plummer J.D. (1989). Point defects and dopant diffusion in silicon. Rev. Mod. Phys 61: 289

    CAS  Google Scholar 

  63. Flynn C.P. (1972). Point defects and diffusion. Calderon Press, Oxford

    Google Scholar 

  64. Vlachos D.G., Katsoulakis M.A. (2000). Derivation and validation of mesoscopic theories for diffusion of interacting molecules. Phys. Rev. Lett 85: 3898–3901

    CAS  Google Scholar 

  65. Lam R., Basak T., Vlachos D.G., Katsoulakis M.A. (2001). Validation of mesoscopic theories and their application to computing effective diffusivities. J. Chem. Phys 115: 11278–11288

    CAS  Google Scholar 

  66. Gillespie D.T. (1976). A general method for numerically simulating the stochastic evolution of coupled chemical reactions. J. Comput. Phys 22: 403–434

    CAS  Google Scholar 

  67. Gomer R. (1990). Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys 53: 917–1002

    CAS  Google Scholar 

  68. Kapur S.S., Prasad M., Crocker J.C., Sinno T. (2005). Role of configurational entropy in the thermodynamics of clusters of point defects in crystalline solids. Phys. Rev. B 72: 014119

    Google Scholar 

  69. Henkelman G., Jonsson H. (2001). Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys 115: 9657

    CAS  Google Scholar 

  70. Schulze T.P. (2002). Kinetic Monte Carlo simulations with minimal searching. Phys. Rev. E 65: 036704

    CAS  Google Scholar 

  71. Lukkien J.J., Segers J.P.L., Hilbers P.A.J., Gelten R.J., Jansen A.P.J. (1998). Efficient Monte Carlo methods for the simulation of catalytic surface reactions. Phys. Rev. E 58: 2598–2610

    CAS  Google Scholar 

  72. Bortz A.B., Kalos M.H., Lebowitz J.L. (1975). A new algorithm for Monte Carlo simulations of Ising spin systems. J. Comput. Phys 17: 10–18

    Google Scholar 

  73. Snyder M.A., Chatterjee A., Vlachos D.G. (2004). Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems, invited. Comput. Chem. Eng 29: 701–712

    Google Scholar 

  74. Vlachos D.G. (1998). Stochastic modeling of chemical microreactors with detailed kinetics: induction times and ignitions of H2 in air. Chem. Eng. Sci 53: 157–168

    CAS  Google Scholar 

  75. Resat H., Wiley H.S., Dixon D.A. (2001). Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations. J. Chem. Phys 105: 11026–11034

    CAS  Google Scholar 

  76. DeVita J.P., Sander L.M., Smereka P. (2005). Multiscale kinetic Monte Carlo algorithm for simulating epitaxial growth. Phys. Rev. B 72: 205421

    Google Scholar 

  77. Haseltine E.L., Rawlings J.B. (2002). Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys 117: 6959–6969

    CAS  Google Scholar 

  78. Cao Y., Gillespie D.T., Petzold L.R. (2005). The slow-scale stochastic simulation algorithm. J. Chem. Phys 122: 014116

    Google Scholar 

  79. Chatterjee A., Vlachos D.G. (2006). Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures. J. Chem. Phys 124: 064110

    Google Scholar 

  80. Liu W.E.D., Eijnden E.V. (2005). Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Chem. Phys 123: 1941071–19410716

    Google Scholar 

  81. Samant A., Vlachos D.G. (2005). Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm. J. Chem. Phys 123: 144114

    CAS  Google Scholar 

  82. Salis H., Kaznessis Y.N. (2005). An equation-free probabilistic steady-state approxaimtion: Multigriding, computational singular perturbation, and hierarchical stochastic closures. J. Chem. Phys 123: 2141061–21410616

    Google Scholar 

  83. Katsoulakis M., Majda A.J., Vlachos D.G. (2003). Coarse-grained stochastic processes for microscopic lattice systems. Proc. Natl. Acad. Sci 100: 782–787

    CAS  Google Scholar 

  84. Katsoulakis M.A., Vlachos D.G. (2003). Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles. J. Chem. Phys 119: 9412–9428

    CAS  Google Scholar 

  85. Katsoulakis M.A., Majda A.J., Vlachos D.G. (2003). Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems. J. Comput. Phys 186: 250–278

    Google Scholar 

  86. Chatterjee A., Vlachos D.G., Katsoulakis M.A. (2004). Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules. J. Chem. Phys 121: 11420–11431

    CAS  Google Scholar 

  87. Chatterjee A., Katsoulakis M.A., Vlachos D.G. (2005). Spatially adaptive grand canonical Monte Carlo simulations. Phys. Rev. E 71: 026702

    CAS  Google Scholar 

  88. Chatterjee A., Vlachos D.G., Katsoulakis M. (2005). Numerical assessment of theoretical error estimates in coarse-grained kinetic Monte Carlo simulations: application to surface diffusion. Int. J. Multiscale Comput. Eng 3: 59–70

    Google Scholar 

  89. Ismail A.E., Rutledge G.C., Stephanopoulos G. (2003). Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermodynamic properties. J. Chem. Phys 118: 4414–4423

    CAS  Google Scholar 

  90. Ismail A.E., Stephanopoulos G., Rutledge G.C. (2003). Multiresolution analysis in statistical mechanics. II. The wavelet transform as a basis for Monte Carlo simulations on lattices. J. Chem. Phys 118: 4424–4431

    CAS  Google Scholar 

  91. Chatterjee A., Vlachos D.G. (2006). Temporal acceleration of spatially distributed kinetic Monte Carlo simulations. J. Comput. Phys 211: 596–615

    Google Scholar 

  92. Gillespie D.T. (2001). Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys 115: 1716–1733

    CAS  Google Scholar 

  93. Rathinam M., Petzold L.R., Cao Y., Gillespie D.T. (2003). Stiffness in stochastically reacting systems: the implict tau-leaping method. J. Chem. Phys 119: 12784–12794

    CAS  Google Scholar 

  94. Tian T., Burrage K. (2004). Binomial leap methods for simulating stochastic chemical kinetics. J. Chem. Phys 121: 10356–10364

    CAS  Google Scholar 

  95. Chatterjee A., Vlachos D.G., Katsoulakis M. (2005). Binomial distribution based τ-leap accelerated stochastic simulation. J. Chem. Phys 122: 024112

    Google Scholar 

  96. Chatterjee A., Mayawala K., Edwards J.S., Vlachos D.G. (2005). Time accelerated Monte Carlo simulations using the binomial τ-leap method. Bioinformatics 21: 2136–2137

    CAS  Google Scholar 

  97. Auger A., Chatelain P., Koumoutsakos P. (2006). R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps. J. Chem. Phys 125: 084103

    Google Scholar 

  98. Cao Y., Petzold L.R., Rathinam M., Gillespie D.T. (2004). The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. J. Chem. Phys 121: 12169–12178

    CAS  Google Scholar 

  99. Thostrup P., Christoffersen E., Lorensen H.T., Jacobsen K.W., Besenbacher F., Norskov J.K. (2001). Adsorption-induced step formation. Phys. Rev. Lett 87: 126102

    CAS  Google Scholar 

  100. Kratzer P., Penev E., Scheffler M. (2003). Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations. Appl. Surf. Sci 216: 436–446

    CAS  Google Scholar 

  101. Fichthorn K.A., Scheffler M. (2000). Island nucleation in thin-film epitaxy: a first-principles investigation. Phys. Rev. Lett. 84: 5371

    CAS  Google Scholar 

  102. Neurock M., Hansen E.W. (1998). First-principles-based molecular simulations of heterogeneous catalytic surface chemistry. Comput. Chem. Eng 22: S1045–S1060

    CAS  Google Scholar 

  103. Haug K., Raibeck G. (2003). Kinetic Monte Carlo study of competing hydrogen pathways into connected (100), (110) and (111) Ni surfaces. J. Phys. Chem. B 107: 11433–11440

    CAS  Google Scholar 

  104. Truhlar D.G., Garrett B.C., Klippenstein S.J. (1996). Current status of transition-state theory. J. Phys. Chem 100: 12771–12800

    CAS  Google Scholar 

  105. Car R., Parrinello M. (1985). Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett 55: 2471–2474

    CAS  Google Scholar 

  106. Voter A.F. (1986). Classically exact overlayer dynamics: diffusion of Rhodium clusters on Rh(100). Phys. Rev. B 34: 6819–6829

    CAS  Google Scholar 

  107. Vvedensky D.D. (2004). Multiscale modelling of nanostructures. J. Phys. Cond. Mater 16: R1537–R1576

    CAS  Google Scholar 

  108. Maroudas D. (2000). Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering. AIChE J 46: 878–882

    CAS  Google Scholar 

  109. Wadley H.N.G., Zhou X., Johnson R.A., Neurock M. (2001). Mechanisms, models and methods of vapor deposition. Prog. Mater. Sci 46: 329–377

    CAS  Google Scholar 

  110. Raimondeau S., Vlachos D.G. (2002). Recent developments on multiscale, hierarchical modeling of chemical reactors. Chem. Eng. J 90: 3–23

    CAS  Google Scholar 

  111. Daw M.S., Foiles S.M., Baskes M.I. (1993). The embedded-atom method: a review of theory and applications. Mater. Sci. Rept. 9: 251–310

    CAS  Google Scholar 

  112. Jacobsen K.W., Norskov J.K., Puska M.J. (1987). Interatomic interactions in the effective-medium theory. Phys. Rev. B 35: 7423–7442

    CAS  Google Scholar 

  113. Wang Z., Li Y., Adams J.B. (2000). Kinetic lattice Monte Carlo simulation of facet growth rate. Surf. Sci 450: 51–63

    CAS  Google Scholar 

  114. Abraham F.F., Broughton J.Q., Bernstein N., Kaxiras E. (1998). Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett 44: 783–787

    CAS  Google Scholar 

  115. Jónsson H., Mills G. (1998). Nudged elastic band methods for finding minimum energy paths of transitions. In: Berne B., Ciccotti G., Coker D.F., (eds.) Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, Singapore, pp. 385–404

    Google Scholar 

  116. Wales D.J. (2006). Energy landscapes: calculating pathways and rates. Int. Rev. Phys. Chem 25: 237–282

    CAS  Google Scholar 

  117. Olsen R.A., Kroes G.J., Henkelman G., Arnaldsson A., Jonsson H. (2004). Comparison of methods for finding saddle points without knowledge of final states. J. Chem. Phys 121: 9776

    CAS  Google Scholar 

  118. Voter A.F., Montalenti F., Germann T.C. (2002). Extending the time scales in atomistic simulation of materials. Annu. Rev. Mater. Res 32: 321–346

    CAS  Google Scholar 

  119. Lavrentiev M., Allan N., Harding J., Harris D., Purton J. (2006). Atomistic simulations of surface diffusion and segregartion in ceramics. Comput. Mater. Sci 36: 54–59

    CAS  Google Scholar 

  120. Trushin O., Karim A., Kara A., Rahman T.S. (2005). Self-learning kinetic Monte Carlo method: Application to Cu(111). Phys. Rev. B 72: 1154011–1154019

    Google Scholar 

  121. Renisch S., Schuster R., Wintterlin J., Ertl G. (1999). Dynamics of adatom motion under the influence of mutual interactions: O/Ru(0001). Phys. Rev. Lett 82: 3839–3842

    CAS  Google Scholar 

  122. Maroudas D. (2001). Modeling of radical-surface interactions in the plasma-enhanced chemical vapor deposition of silicon thin films. In: Chakraborty A.K. (eds) Molecular Modeling and Theory in Chemical Engineering. Academic Press, New York, pp. 252–296

    Google Scholar 

  123. Raimondeau, S., Aghalayam, P., Vlachos, D.G., Katsoulakis, M.: Bridging the gap of multiple scales: From microscopic, to mesoscopic, to macroscopic models. In: Proceedings of the Foundations of Molecular Modeling and Simulation, AIChE Symposium Series No. 325, 97, pp. 155–158. Keystone, Co, USA (2001)

  124. Gillespie D.T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem 81: 2340–2361

    CAS  Google Scholar 

  125. Gibson M.A., Bruck J. (2000). Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104: 1876–1889

    CAS  Google Scholar 

  126. Gilmer G.H., Bennema P. (1972). Simulation of crystal growth with surface diffusion. J. Appl. Phys 43: 1347–1360

    CAS  Google Scholar 

  127. Reese J.S., Raimondeau S., Vlachos D.G. (2001). Monte Carlo algorithms for complex surface reaction mechanisms: efficiency and accuracy. J. Comput. Phys 173: 302–321

    CAS  Google Scholar 

  128. Vlachos D.G., Schmidt L.D., Aris R. (1990). The effects of phase transitions, surface diffusion, and defects on surface catalyzed reactions: Oscillations and fluctuations. J. Chem. Phys 93: 8306–8313

    CAS  Google Scholar 

  129. Vlachos D.G., Schmidt L.D., Aris R. (1991). The effect of phase transitions, surface diffusion, and defects on heterogeneous reactions: multiplicities and fluctuations. Surf. Sci 249: 248–264

    CAS  Google Scholar 

  130. Fichthorn F.A., Weinberg W.H. (1991). Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys 95: 1090–1096

    CAS  Google Scholar 

  131. Mayawala K., Vlachos D.G., Edwards J.S. (2005). Computational modeling reveals molecular details of epidermal growth factor binding. BMC Cell Biol 6(41): 1–11

    Google Scholar 

  132. van der Eerden J.P., Bennema P., Cherepanova T.A. (1978). Survey of Monte Carlo simulations of crystal surfaces and crystal growth. Prog. Crystal Growth Characterization 1: 219–254

    Google Scholar 

  133. Masel R.I. (1996). Principles of Adsorption and Reaction on Solid Surfaces. Wiley, NY

    Google Scholar 

  134. Schoeberl B., Eichler-Jonsson C., Gilles E.D., Müller G. (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized receptors. Nat. Biotechnol 20: 370–375

    Google Scholar 

  135. Dumesic, I.A., Rud, D.F., Aparicio, L.M., Rekoske, J.E., Revino, A.A.: The Microkinetics of Heterogeneous Catalysis. American Chemical Society, Washington, DC (1993)

  136. Cormen T.H., Leiserson C.E., Rivest R.L. (2001). Introduction to Algorithms. MIT Press, Cambridge, MA

    Google Scholar 

  137. Cao Y., Li H., Petzold L.R. (2004). Efficient formulation of the stochastic simulation algorithm. J. Chem. Phys 121: 4059–4067

    CAS  Google Scholar 

  138. Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. (1986). Numerical Recipes. Cambridge University Press, Cambridge

    Google Scholar 

  139. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group, chap. 9. New York (1992)

  140. Chatterjee, A., Vlachos, D.G.: Systems tasks in nanotechnology via hierarchical multiscale: formation of nanodisks arrays in heteroepitaxy. Chem. Eng. Sci. In press (2007).

  141. Chatterjee A., Snyder M.A., Vlachos D.G. (2004). Mesoscopic modeling of chemical reactivity. Chem. Eng. Sci. ISCRE 18: invited 59: 5559–5567

    Google Scholar 

  142. Chatterjee, A., Vlachos, D.G.: Hierarchical coarse-grained models derived from Kinetic Monte Carlo models: Part II: Coarse-grained Monte Carlo method for multiple interacting species, sites and crystallographic surface types. J. Chem. Phys. In preparation (2007)

  143. Daw M.S., Baskes M.I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29: 6443–6453

    CAS  Google Scholar 

  144. Stillinger F.H., Weber T.A. (1985). Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31: 5262–5271

    CAS  Google Scholar 

  145. Haken H.(1977). Synergetics. Springer, Berlin Heidelberg New York

    Google Scholar 

  146. Rao C.V., Arkin A.P. (2003). Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys 118: 4999–5010

    CAS  Google Scholar 

  147. Hill T.L. (1987). Statistical Mechanics Principles and Selected Applications. Dover, New York

    Google Scholar 

  148. Stinchcombe K.H., White H. (1989). Multilayer feedforward networks are universal approximators. Neural Netw 2: 359–366

    Google Scholar 

  149. Katsoulakis M., Trashorras J. (2006). Information loss in coarse-graining of stochastic particle dynamics. J. Stat. Phys. 122: 115–135

    Google Scholar 

  150. Burrage K., Tian T.H., Burrage P. (2004). A multi-scaled approach for simulating chemical reaction systems. Prog. Biophys. Mol. Biol 85: 217–234

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionisios G. Vlachos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, A., Vlachos, D.G. An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J Computer-Aided Mater Des 14, 253–308 (2007). https://doi.org/10.1007/s10820-006-9042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9042-9

Keywords

Navigation