Skip to main content
Log in

Phase-field model during static recrystallization based on crystal-plasticity theory

  • Published:
Journal of Computer-Aided Materials Design

Abstract

A numerical model and computational procedure for static recrystallization are developed using a phase-field method coupled with crystal-plasticity theory. In this model, first, the microstructure and dislocation density during the deformation process of a polycrystalline metal are simulated using a finite element method based on strain-gradient crystal-plasticity theory. Second, the calculated data are mapped onto the regular grids used in the phase-field simulation. The stored energy is calculated from the dislocation density and is smoothed to avoid computational difficulty. Furthermore, the misorientation required for nucleation criteria is calculated at all grid points. Finally, phase-field simulation of the nucleation and growth of recrystallization is performed using the mapped data. By performing a series of numerical simulations based on the proposed numerical procedure, it has been confirmed that the recrystallization microstructure can be reproduced from the deformation microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raabe, D.: Computational Materials Science. Federal Republic of Germany (1998)

  2. Humphreys, F.J., Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd edn. Elsevier (2004)

  3. Srolovitz, D.J., Grest, G.S., Anderson, M.P.: Computer simulation of recrystallization—I. Homogeneous nucleation and growth. Acta metal. 34, 1833–1845 (1986)

    Article  CAS  Google Scholar 

  4. Hesselbarth, H.W., Gobel, I.R.: Simulation of recrystallization by cellular automata. Acta Metall. Mater. 39, 2135–2143 (1991)

    Article  CAS  Google Scholar 

  5. Miodownik, M.A.: A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminium alloys. J. Light Metals 2, 125–135 (2002)

    Article  Google Scholar 

  6. Raabe, D.: Scaling Monte Carlo kinetics of the Potts model using rate theory. Acta Mater. 48, 1617–1628 (2000)

    Article  CAS  Google Scholar 

  7. Rollet, A.D., Raabe, D.: A hybrid model for mesoscopic simulation of recrystallization. Comp. Mate. Sci. 21, 69–78 (2001)

    Article  Google Scholar 

  8. Kobayashi, R.: Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410–423 (1993)

    Article  Google Scholar 

  9. Warren, J.A., Boettinger, W.J.: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metal. 43, 689 (1995)

    Article  CAS  Google Scholar 

  10. Kobayashi, R., Warren, J.A., Carter, W.C.: A continuum model of grain boundaries. Physica D 140, 141–150 (2000)

    Article  Google Scholar 

  11. Chen, L.-Q., Yang, W.: Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics. Phy. Rev. B 50, 15752–15756 (1994)

    Article  CAS  Google Scholar 

  12. Steinbach, I., Pezzolla, F.: A generalized field method for multiphase transformations using interface fields. Physica D 134, 385–393 (1999)

    Article  Google Scholar 

  13. Kobayashi, R., Giga, Y.: Equations with singular diffusivity. J. Statistical Physics 95, 1187–1220 (1999)

    Article  Google Scholar 

  14. Xiao, N., Tong, M., Lan, Y., Li, D., Li, Y.: Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite-ferrite transformation. Acta Meter. 54, 1265–1278 (2006)

    Article  CAS  Google Scholar 

  15. Lan, Y.J., Xiao, N.M., Li, D.Z., Li, Y.Y.: Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Meter. 53, 991–1003 (2005)

    Article  CAS  Google Scholar 

  16. Higa, Y., Sawada, Y., Tomita, Y.: Computational simulation of characteristic length dependent deformation behavior of polycrystalline metals. Trans. JSME A69, 523–529 (in Japanese) (2003)

    Google Scholar 

  17. Peirce, D., Shih, C.F., Needleman, A.: A tangent modulus method for rate dependent solids. Comput. Struc. 18, 875–887 (1984)

    Article  Google Scholar 

  18. Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. London. Series A 348, 101–127 (1976)

    Article  CAS  Google Scholar 

  19. Pan, J., Rice, J.R.: Rate sensitivity of plastic flow and implications for yield-surface vertices. J. Solids Struct. 19, 973–987 (1983)

    Article  Google Scholar 

  20. Ohashi, T.: Numerical modelling of plastic multislip in metal crystals of f.c.c. type. Philos. Magaz. A 70, 793–803 (1994)

    Article  CAS  Google Scholar 

  21. Warren, J.A., Kobayashi, R., Lobkovskey, A.E., Carter, W.C.: Extending phase field models of solidification to polycrystalline materials. Acta Mater. 51, 6035–6058 (2003)

    Article  CAS  Google Scholar 

  22. Warren, J.A., Carter, W.C., Kobayashi, R.: A phase field model of the impingement of solidifying particles. Physica A 261, 159–166 (1998)

    Article  Google Scholar 

  23. Takaki, T., Fukuoka, T., Tomita, Y.: Phase-field simulation during directional solidification of a binary alloy using adaptive finite element method. J. Crys. Growth 283, 263–278 (2005)

    Article  CAS  Google Scholar 

  24. Nakamachi, E., Ariyoshi, T., Kobayashi, Y., Hirose, M., Morimoto, H.: SEM-EBSD experimental and finite element analyses of plastic deformation induced crystal rotation of pure aluminium single crystals. Trans. Japan Soc. Mech. Eng. A 69, 817–822 (2003)

    CAS  Google Scholar 

  25. Kuo, C.-M., Chu, H.-H.: Plastic deformation mechanism of pure aluminum at low homologous temperatures. Mate. Sci. Eng. A 409, 59–66 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Takaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takaki, T., Yamanaka, A., Higa, Y. et al. Phase-field model during static recrystallization based on crystal-plasticity theory. J Computer-Aided Mater Des 14 (Suppl 1), 75–84 (2007). https://doi.org/10.1007/s10820-007-9083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-007-9083-8

Keywords

Navigation