Skip to main content
Log in

How accurate are continuum solvation models for drug-like molecules?

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have estimated the hydration free energy for 20 neutral drug-like molecules, as well as for three series of 6–11 inhibitors to avidin, factor Xa, and galectin-3 with four different continuum solvent approaches (the polarised continuum method the Langevin dipole method, the finite-difference solution of the Poisson equation, and the generalised Born method), and several variants of each, giving in total 24 different methods. All four types of methods have been thoroughly calibrated for a number of experimentally known small organic molecules with a mean absolute deviation (MAD) of 1–6 kJ/mol for neutral molecules and 4–30 kJ/mol for ions. However, for the drug-like molecules, the accuracy seems to be appreciably worse. The reason for this is that drug-like molecules are more polar than small organic molecules and that the uncertainty of the methods is proportional to the size of the solvation energy. Therefore, the accuracy of continuum solvation methods should be discussed in relative, rather than absolute, terms. In fact, the mean unsigned relative deviations of the best solvation methods, 0.09 for neutral and 0.05 for ionic molecules, correspond to 2–20 kJ/mol absolute error for the drug-like molecules in this investigation, or 2–3,000 in terms of binding constants. Fortunately, the accuracy of all methods can be improved if only relative energies within a series of inhibitors are considered, especially if all of them have the same net charge. Then, all except two methods give MADs of 2–5 kJ/mol (corresponding to an uncertainty of a factor of 2–7 in the binding constant). Interestingly, the generalised Born methods typically give better results than the Poison–Boltzmann methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200

    Article  CAS  Google Scholar 

  2. Orozco M, Luque FJ (2000) Chem Rev 100:4187–4225

    Article  CAS  Google Scholar 

  3. Simonson T (2001) Curr Opin Struct Biol 11:243–252

    Article  CAS  Google Scholar 

  4. Feig M, Brooks CL (2004) Curr Opin Struct Biol 14:217–224

    Article  CAS  Google Scholar 

  5. Born M (1920) Zeitsch Physi 1:45

    Article  CAS  Google Scholar 

  6. Onsager LJ (1936) Am Chem Soc 58:1486

    Article  CAS  Google Scholar 

  7. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

  8. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  9. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  10. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  11. Tomasi J, Mennucci B, Cances E (1999) J Mol Struct (Theochem) 464:211

    Article  CAS  Google Scholar 

  12. Chipman DM (2000) J Chem Phys 112:5558

    Article  CAS  Google Scholar 

  13. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799

    Google Scholar 

  14. Vreven T, Mennucci B, da Silva MO, Morokuma K, Tomasi J (2001) J Chem Phys 115:62–72

    Article  CAS  Google Scholar 

  15. Fedorov DG, Kitaura K, Li H, Jensen JH, Gordon MS (2006) J Comput Chem 27:976–985

    Article  CAS  Google Scholar 

  16. Warwicker J, Watson HC (1982) J Mol Biol 157:671

    Article  CAS  Google Scholar 

  17. Gilson MK, Honig B (1988) Prot Struct Funct Genet 3:32–52

    Article  CAS  Google Scholar 

  18. Sharp KA, Honig B (1990) Annu Rev Biophys Biophys Chem 19:310

    Article  Google Scholar 

  19. Sharp KA, Honig B (1995) Curr Opin Struct Biol 5:323

    Article  CAS  Google Scholar 

  20. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  21. Simonsson T, Brünger AT (1994) J Phys Chem 98:4683

    Article  Google Scholar 

  22. Baker NA (2004) Methods Enzymol 383:94

    Article  CAS  Google Scholar 

  23. Chen Y, Noodleman L, Case DA, Bashford D (1994) J Phys Chem 98:11875

    Google Scholar 

  24. Baldridge K, Fine R, Hager A (1994) J Comput Chem 15:1217

    Article  CAS  Google Scholar 

  25. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA, Honig B (1994) J Am Chem Soc 116:11875

    Article  CAS  Google Scholar 

  26. Gorgonea V, Merz KM (1999) J Phys Chem A 103:5171–5188

    Article  Google Scholar 

  27. Schnieders MJ, Baker NA, Ren P, Ponder JW (2007) J Chem Phys 126:124114

    Article  Google Scholar 

  28. Hoitjink GJ, de Boer E, Van der Meij PH, Weijland EP (1956) Recl Trav Pays-Bas 75:487

    Google Scholar 

  29. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127

    Article  CAS  Google Scholar 

  30. Onufriev A, Bashford D, Case DA (2000) J Phys Chem B 104:3712–3720

    Article  CAS  Google Scholar 

  31. Bashford D, Case DA (2000) Annu Rev Phys Chem 51:129–152

    Article  CAS  Google Scholar 

  32. Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CI (2004) J Comput Chem 25:265–284

    Article  CAS  Google Scholar 

  33. Schnieders MJ, Ponder JW (2007) J Chem Theory Comput 2007(3):2083–2097

    Article  Google Scholar 

  34. Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 1995(246):122–129

    Article  Google Scholar 

  35. Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152

    Article  CAS  Google Scholar 

  36. Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) J Chem Theory Comput 3:2011–2033

    Article  CAS  Google Scholar 

  37. Warshel A (1979) J Phys Chem 83:1640

    Article  CAS  Google Scholar 

  38. Florián J, Warshel A (1997) J Phys Chem B 101:5583

    Article  Google Scholar 

  39. Florián J, Warshel A (1999) J Phys Chem B 103:10282–10288

    Article  Google Scholar 

  40. Hermida-Ramón JM, Karlström G, Lindh R (2002) J Phys Chem B 106:7115–7120

    Article  Google Scholar 

  41. Langevin P (1905) Annales de Chemie Physique 8:70

    Google Scholar 

  42. Sandberg L, Casemyr R, Edholm O (2002) J Phys Chem 106:7889–7897

    CAS  Google Scholar 

  43. Hermann RB (1972) J Phys Chem 76:2754–2759

    Article  CAS  Google Scholar 

  44. Cossi M, Tomasi J, Cammi R (1995) Int Quantum Chem Quant Chem Symp 29:695

    Article  CAS  Google Scholar 

  45. Floris FM, Tomasi JJ (1989) Comput Chem 10:616

    Article  CAS  Google Scholar 

  46. Cossi M, Mennucci B, Cammi RJ (1996) Comput Chem 17:57

    Article  CAS  Google Scholar 

  47. Rizzo RC, Aynechi T, Case DA, Kuntz ID (2006) J Chem Theory Comput 2:128–139

    Article  CAS  Google Scholar 

  48. Tan C, Tan Y-H, Luo R (2007) J Phys Chem B 111:12263–12274

    Article  CAS  Google Scholar 

  49. Maple JR, Cao Y, Damm W, Halgren TA, Kaminski GA, Zhang LY, Friesner RA (2005) J Chem Theory Comput 1:694–715

    Article  CAS  Google Scholar 

  50. Wagoner JA, Baker NA (2006) Proc Natl Acad Sci USA 103:8331–8336

    Article  CAS  Google Scholar 

  51. Gallicchio E, Zhang LY, Levy RM (2002) J Comp Chem 23:517–529

    Article  CAS  Google Scholar 

  52. Gallicchio E, Levy RM (2004) J Comp Chem 25:479–499

    Article  CAS  Google Scholar 

  53. Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098

    Article  CAS  Google Scholar 

  54. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  55. Tan C, Yang L, Luo R (2006) J Phys Chem B 110:18686–18687

    Google Scholar 

  56. Klamt A, Mennucci B, Tomasi J, Barone V, Curutchet C, Orozco M, Luque FJ (2009) Acc Chem Res, in press. doi: 10.1021/ar800187p

  57. Shirts MR, Pitera JW, Swope WC, Pande VS (2003) J Chem Phys 119:5740–5761

    Article  CAS  Google Scholar 

  58. Li J, Zhu T, Hawkins GD, Winge P, Liotard DA, Cramer CJ, Truhlar DG (1999) Theor Chim Acta 103:9–63

    CAS  Google Scholar 

  59. Thompson JD, Cramer CJ, Truhlar DG (2004) 108:6532–6542

  60. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33(12):889–897

    Article  CAS  Google Scholar 

  61. Vorobjev YN, Hermans J (1999) Biophys Chem 78:195–205

    Article  CAS  Google Scholar 

  62. Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Biochemistry 20:849–855

    Article  CAS  Google Scholar 

  63. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081

    Article  CAS  Google Scholar 

  64. Alagona G, Ghio C, Nagy PI (2004) Int J Quant Chem 99:161–178

    Article  CAS  Google Scholar 

  65. Takano Y, Houk KN (2005) J Chem Theory Comput 1:70–77

    Article  Google Scholar 

  66. Kuhn B, Kollman PA (2000) J Med Chem 43:3786–3791

    Article  CAS  Google Scholar 

  67. Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, Ryde U (2006) J Med Chem 49:6596–6606

    Article  CAS  Google Scholar 

  68. Kongsted J; Ryde U (2009) J Comput Aided Mol Des 23:63–71

    Google Scholar 

  69. Matter H, Defossa E, Heinelt U, Blohm P-M, Schneider D, Müller A, Herok S, Schreuder H, Liesum A, Brachvogel V, Lönze P, Walser A, Al-Obeidi F, Wildgoose P (2002) J Med Chem 45:2749–2769

    Article  CAS  Google Scholar 

  70. Sörme P, Arnoux P, Kahl-Knutsson B, Leffler H, Rini JM, Nilsson UJ (2005) J Am Chem Soc 127:1737–1743

    Article  Google Scholar 

  71. Mobley DL, Chodera JD, Dill KA (2008) J Phys Chem B 112:938–946

    Article  CAS  Google Scholar 

  72. Pugliese L, Coda A, Malcovati M, Bolognesi M (1993) J Mol Biol 231:698–710

    Article  CAS  Google Scholar 

  73. Perola E, Charifson PS (2004) J Med Chem 47:2499–2510

    Article  CAS  Google Scholar 

  74. PC Spartan (2001) Pro 1.0.6, Wavefunction, Inc. 18401 Von Karman Avenue, Irvine, CA 92612

  75. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  76. Mennucci B, Tomasi JJ (1997) Chem Phys 106:5151

    CAS  Google Scholar 

  77. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 (Revision A.9). Gaussian Inc, Pittsburgh

    Google Scholar 

  78. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  79. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  80. Besler BH, Merz KM, Kollman PA (1990) Atomic Charges Derived from semiempirical Methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  81. Case DA, Darden TA, Cheatham TEIII, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  82. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1975) J Am Chem Soc 117:5179–5197

    Article  Google Scholar 

  83. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  84. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  85. Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL (2004) J Comput Chem 25:265–284

    Article  CAS  Google Scholar 

  86. Rocchia W, Alexov E, Honig B (2001) J Phys Chem B 105:6507–6514

    Article  CAS  Google Scholar 

  87. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  Google Scholar 

  88. Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  89. Tsui V, Case DA (2001) Biopol 56:275–291

    Article  CAS  Google Scholar 

  90. Onufriev A, Bashford D, Case DA (2004) Proteins 55:383–394

    Article  CAS  Google Scholar 

  91. Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2007) J Chem Theory Comput 3:156–169

    Article  CAS  Google Scholar 

  92. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  93. Ghosh A, Rapp CS, Friesner RA (1998) J Phys Chem B 102:10983

    Article  CAS  Google Scholar 

  94. Curutchet C, Orozco M, Luque FJ, Mennucci B, Tomasi J (2006) J Comput Chem 27:1769–1780

    Article  CAS  Google Scholar 

  95. Gohlke H, Klebe G (2002) Angew Chem Int Ed 41:2644–2676

    Article  CAS  Google Scholar 

  96. Raha K, Merz KM (2005) J Med Chem 48:4558–4575

    Article  CAS  Google Scholar 

  97. Gohlke H, Case DA (2004) J Comput Chem 28:238–250

    Article  Google Scholar 

  98. Jensen JH, Li H, Robertson AD, Molina PA (2002) J Phys Chem B 106:3486–3496

    Article  Google Scholar 

Download references

Acknowledgments

This investigation has been supported by grants from the Swedish research council and by computer resources of Lunarc at Lund University. J. K. thanks the Villum Kann Rasmussen foundation for financial support. We thank Drs. J. Stålring, P. Rydberg, and L. Olsen for help with the selection and set-up of drug-like molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ryde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 628 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kongsted, J., Söderhjelm, P. & Ryde, U. How accurate are continuum solvation models for drug-like molecules?. J Comput Aided Mol Des 23, 395–409 (2009). https://doi.org/10.1007/s10822-009-9271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9271-6

Keywords

Navigation