Skip to main content

Advertisement

Log in

A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Onchocerciasis is a leading cause of blindness with at least 37 million people infected and more than 120 million people at risk of contracting the disease; most (99%) of this population, threatened by infection, live in Africa. The drug of choice for mass treatment is the microfilaricidal Mectizan® (ivermectin); it does not kill the adult stages of the parasite at the standard dose which is a single annual dose aimed at disease control. However, multiple treatments a year with ivermectin have effects on adult worms. The discovery of new therapeutic targets and drugs directed towards the killing of the adult parasites are thus urgently needed. The chitinase of filarial nematodes is a new drug target due to its essential function in the metabolism and molting of the parasite. Closantel is a potent and specific inhibitor of chitinase of Onchocerca volvulus (OvCHT1) and other filarial chitinases. However, the binding mode and specificity of closantel towards OvCHT1 remain unknown. In the absence of a crystallographic structure of OvCHT1, we developed a homology model of OvCHT1 using the currently available X-ray structures of human chitinases as templates. Energy minimization and molecular dynamics (MD) simulation of the model led to a high quality of 3D structure of OvCHIT1. A flexible docking study using closantel as the ligand on the binding site of OvCHIT1 and human chitinases was performed and demonstrated the differences in the closantel binding mode between OvCHIT1 and human chitinase. Furthermore, molecular dynamics simulations and free-energy calculation were employed to determine and compare the detailed binding mode of closantel with OvCHT1 and the structure of human chitinase. This comparative study allowed identification of structural features and properties responsible for differences in the computationally predicted closantel binding modes. The homology model and the closantel binding mode reported herein might help guide the rational development of novel drugs against the adult parasite of O. volvulus and such findings could be extrapolated to other filarial neglected diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Basanez MG, Pion SD, Churcher TS, Breitling LP, Little MP, Boussinesq M (2006) PLoS Med 3(9):e371

    Article  Google Scholar 

  2. Cupp EW, Cupp MS (2005) Am J Trop Med Hyg 73(6):1159

    Google Scholar 

  3. Cupp EW, Duke BO, Mackenzie CD, Guzman JR, Vieira JC, Mendez-Galvan J, Castro J, Richards F, Sauerbrey M, Dominguez A, Eversole RR, Cupp MS (2004) Am J Trop Med Hyg 71(5):602

    CAS  Google Scholar 

  4. Basanez MG, Pion SD, Boakes E, Filipe JA, Churcher TS, Boussinesq M (2008) Lancet Infect Dis 8(5):310

    Article  CAS  Google Scholar 

  5. Diawara L, Traore MO, Badji A, Bissan Y, Doumbia K, Goita SF, Konate L, Mounkoro K, Sarr MD, Seck AF, Toe L, Touree S, Remme JH (2009) PLoS Negl Trop Dis 3(7):e497

    Article  Google Scholar 

  6. Kaminsky R, Ducray P, Jung M, Clover R, Rufener L, Bouvier J, Weber SS, Wenger A, Wieland-Berghausen S, Goebel T, Gauvry N, Pautrat F, Skripsky T, Froelich O, Komoin-Oka C, Westlund B, Sluder A, Maser P (2008) Nature 452(7184):176

    Article  CAS  Google Scholar 

  7. Gloeckner C, Garner AL, Mersha F, Oksov Y, Tricoche N, Eubanks LM, Lustigman S, Kaufmann GF, Janda KD (2010) Proc Natl Acad Sci USA 107(8):3424

    Article  CAS  Google Scholar 

  8. Wu Y, Adam R, Williams SA, Bianco AE (1996) Mol Biochem Parasitol 75(2):207

    Article  CAS  Google Scholar 

  9. Wu Y, Egerton G, Underwood AP, Sakuda S, Bianco AE (2001) J Biol Chem 276(45):42557

    Article  CAS  Google Scholar 

  10. Wang SH, Zheng HJ, Dissanayake S, Cheng WF, Tao ZH, Lin SZ, Piessens WF (1997) Am J Trop Med Hyg 56(4):474

    CAS  Google Scholar 

  11. Harrison RA, Wu Y, Egerton G, Bianco AE (1999) Vaccine 18(7–8):647

    Article  CAS  Google Scholar 

  12. Magrane M, Consortium U (2011) Database (Oxford) 2011:bar009

  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215(3):403

    CAS  Google Scholar 

  14. Notredame C, Higgins DG, Heringa J (2000) J Mol Biol 302(1):205

    Article  CAS  Google Scholar 

  15. Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Nucleic Acids Res 33(Web Server issue):W36

  16. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2007) Curr Protoc Protein Sci Chap 2:Unit 2 9

  17. Sali A, Blundell TL (1993) J Mol Biol 234(3):779

    Article  CAS  Google Scholar 

  18. Luthy R, Bowie JU, Eisenberg D (1992) Nature 356(6364):83

    Article  CAS  Google Scholar 

  19. Melo F, Devos D, Depiereux E, Feytmans E (1997) Proc Int Conf Intell Syst Mol Biol 5:187

    CAS  Google Scholar 

  20. Wiederstein M, Sippl MJ (2007) Nucleic Acids Res 35(Web Server issue):W407

  21. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605

    Article  CAS  Google Scholar 

  22. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) J Comput Chem 26(16):1701

    Article  Google Scholar 

  23. Hess BBH, Fraaije J, Berendsen HJC (1997) J Comput Chem 18(12):10

    Article  Google Scholar 

  24. Miyamoto SK PA (1992) J Comput Chem 13(8):11

    Google Scholar 

  25. York DY W (1994) J Chem Phys 101(4):3

    Google Scholar 

  26. Trott O, Olson AJ (2010) J Comput Chem 31(2):455

    CAS  Google Scholar 

  27. Rao FV, Houston DR, Boot RG, Aerts JM, Sakuda S, van Aalten DM (2003) J Biol Chem 278(22):20110

    Article  CAS  Google Scholar 

  28. Sanner MF (1999) J Mol Graph Model 17(1):57

    CAS  Google Scholar 

  29. Sanner MF, Duncan BS, Carrillo CJ, Olson AJ (1999) Pac Symp Biocomput 401

  30. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30(16):2785

    Article  CAS  Google Scholar 

  31. Wang R, Lai L, Wang S (2002) J Comput Aided Mol Des 16(1):11

    Article  CAS  Google Scholar 

  32. Velec HF, Gohlke H, Klebe G (2005) J Med Chem 48(20):6296

    Article  CAS  Google Scholar 

  33. Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, Aerts JM, van Aalten DM (2002) J Biol Chem 277(28):25537

    Article  CAS  Google Scholar 

  34. Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, Adams DJ, Shiomi K, Omura S, van Aalten DM (2005) Chem Biol 12(1):65

    Article  CAS  Google Scholar 

  35. Olland AM, Strand J, Presman E, Czerwinski R, Joseph-McCarthy D, Krykbaev R, Schlingmann G, Chopra R, Lin L, Fleming M, Kriz R, Stahl M, Somers W, Fitz L, Mosyak L (2009) Protein Sci 18(3):569

    CAS  Google Scholar 

  36. Chothia C, Lesk AM (1986) EMBO J 5(4):823

    CAS  Google Scholar 

  37. Montelione GT, Zheng D, Huang YJ, Gunsalus KC, Szyperski T (2000) Nat Struct Biol 7(Suppl):982

    Google Scholar 

  38. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22(2):195

    Article  CAS  Google Scholar 

  39. Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Structure 2(12):1169

    Article  CAS  Google Scholar 

  40. van Aalten DM, Synstad B, Brurberg MB, Hough E, Riise BW, Eijsink VG, Wierenga RK (2000) Proc Natl Acad Sci USA 97(11):5842

    Article  Google Scholar 

  41. Hollis T, Monzingo AF, Bortone K, Ernst S, Cox R, Robertus JD (2000) Protein Sci 9(3):544

    Article  CAS  Google Scholar 

  42. Terwisscha van Scheltinga AC, Kalk KH, Beintema JJ, Dijkstra BW (1994) Structure 2(12):1181

    Article  CAS  Google Scholar 

  43. Sun YJ, Chang NC, Hung SI, Chang AC, Chou CC, Hsiao CD (2001) J Biol Chem 276(20):17507

    Article  CAS  Google Scholar 

  44. Terwisscha van Scheltinga AC, Armand S, Kalk KH, Isogai A, Henrissat B, Dijkstra BW (1995) Biochemistry 34(48):15619

    Article  CAS  Google Scholar 

  45. van Aalten DM, Komander D, Synstad B, Gaseidnes S, Peter MG, Eijsink VG (2001) Proc Natl Acad Sci USA 98(16):8979

    Article  Google Scholar 

  46. Bortone K, Monzingo AF, Ernst S, Robertus JD (2002) J Mol Biol 320(2):293

    Article  CAS  Google Scholar 

  47. Garner AL, Gloeckner C, Tricoche N, Zakhari JS, Samje M, Cho-Ngwa F, Lustigman S, Janda KD (2011) J Med Chem 54(11):3963

    Article  CAS  Google Scholar 

  48. Englebienne P, Moitessier N (2009) J Chem Inf Model 49(6):1568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Centro Nacional de Supercomputo, México for providing the access to the “Argentum” cluster, Thomas R. Unnasch for critical reading on an earlier draft, Cesar Millán-Pacheco and Nina Pastor for very valuable comments and suggestions. Mario A. Rodríguez-Pérez and Xianwu Guo hold a scholarship from Comisión de Operación y Fomento de Actividades Académicas of Instituto Politécnico Nacional-México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Segura-Cabrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segura-Cabrera, A., Bocanegra-García, V., Lizarazo-Ortega, C. et al. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design. J Comput Aided Mol Des 25, 1107–1119 (2011). https://doi.org/10.1007/s10822-011-9489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9489-y

Keywords

Navigation